The METCO Group has twenty years experience in project management. Working with thousands of owners and industries, we participate in multiple areas of their operations from development of new plants and facilities to remediation of their environmental problems. Our Group has over ten years of experience in thermal material processing and now has developed plants and processes to remediate petroleum contaminated soils and destroy many other organic contaminants.

METCO'S soil remediation equipment employs patented technology that separates the soil from the thermal combustion chamber and eliminates contaminates by a radiant thermal process which removes hydrocarbons and destroys many other organic pollutants. The hydrocarbons are removed as gases, which are recondensed and recycled as fuel. This process eliminates all forms of emissions which originate from the contaminated soil. Unlike other thermal processes, depending on afterburners to destroy hydrocarbons and chemical contaminants, METCO'S plants never contaminate exhaust air flows that limit the production of most thermal plants to approximately 25 tons per hour.

The technology employed by METCO is not only environmentally safe, but allows production levels from 150 tons per hour to over 300 tons per hour. METCO can remediate your soil problems on site with portable plants or at our stationary facilities in Maryland. Transportation can be arranged by truck or rail, providing more flexibility and cost savings to the industries we serve.

Specializing in remediation of petroleum contaminated soil, METCO can offer a reasonable alternative to accepting the financial liability which can continue to exist after landfilling your contaminated soils. We can safely accept your soil at our enclosed and permitted facilities for thermal remediation. Our price can compete with other less desirable methods of disposal and eliminate the associated risks. METCO'S performance can be bonded and certificates of destruction are available from our process. For information and pricing of our services contact us at (301) 729-6922 or FAX (301) 729-0118.
A PROBLEM SOIL?
GRR! HAS
THE SOLUTION.

Recycle Your Soil!
as a raw material in the manufacture of
GIANT CEMENT

Through our patented Tigr! process, GIANT Resource Recovery has removed the
contaminates from and recycled over 60,000 tons of soil. All of the solid siliceous
residue from the process was then used as part of the raw material for GIANT’s
cement production in a facility that meets RCRA standards.

- Improved waste management with NO LIABILITY
- Positive public perception of recycling
- No more dependence on landfills
- Protection of the environment

We turn a liability — waste — into an asset that replaces sand in our
manufacturing process. Call us today at 1-800-786-0477 for an
information packet.

Grr!
Giant Resource Recovery Company
Highway 453 / Post Office Box 352
Harleyville, South Carolina 29448
(803) 496-7676 / (800) 786-0477

Write in 130
Contents

January-February 1992

Features

6 Don’t make waves
Analysis of water samples for total petroleum hydrocarbons
By James E. Bruya and Andrew John Friedman

8 Where to draw the line
Hazardous? Non-hazardous? Which regulations apply to what?
By Kevin M. Bonzo

12 Looking for pesticides
Advances in gas chromatography characterize pesticides

16 Reduce sampling errors
Careful extraction method can improve accuracy of soil analyses
By Ellen G. Cool

20 Gambling with financial assurance
There are at least two good reasons not to take chances with tank coverage
By Tom Gallagher, J.D.

24 Give tanks a ‘proper burial’
Proper installation critical to avert future problems
By Mose Chandler

30 Clearing your headspace
Pack up your samples in a plastic freezer bag
By Jack Murphy

34 Simplified method cuts sampling costs
Single-stage extraction represents small margin of error
By Donald S. Lavery and Edmund C. Manke, Jr.

44 It’s just a phase you’re going through
What services to expect in each phase of risk assessment
By Lyle A. White

Departments

41 What’s new
48 Fax-o-gram
54 Index + Hotline

Here’s How It Works

49 O-C Tank system
50 Art’s soil gas probe
52 Hrubetz process

Soils magazine is published nine times per year by Group III Communications, Inc., 10229 E. Independence Ave., Independence, Missouri, 64053. Phone: 816-254-8735; FAX: 816-254-2128. Entire contents copyright 1992 by Group III Communications, Inc. All rights reserved. Opinions expressed by writers in Soils magazine are not necessarily those held by the publisher. SUBSCRIPTIONS: Soils magazine is mailed to companies with hydrocarbon storage liabilities and regulatory people. U.S. subscriptions: $24 a year. Outside U.S.: $40 a year. U.S. funds only.
Do You Know Where Your Contaminated Soil Is?

You'd better — because even after it's hauled off, you're still responsible (regardless of how much you paid!). When your soil was removed, did you solve your problem or just transfer it? Was it processed to State Clean Fill Standards or was it mixed into other products? Did you entrust it to someone that might not be in business tomorrow?

If you can't answer these questions, it could be later than you think.

We're TPS Technologies Inc., the nation's leader in thermal recycling of petroleum-contaminated soils. We'll virtually eliminate your liability by remediating your soil at one of our state-of-the-art Soil Recycling Centers. In fact, we guarantee your recycled soil will meet or exceed State regulatory cleanup standards.

So don't stay up late worrying about your petroleum-contaminated soil (or when it might come back to haunt you!). Call or write today.

Our Soil Recycling Centers located throughout the U.S. ensure contaminants never reach the surrounding environment.

TPS Technologies Inc.

2070 South Orange Blossom Trail
Apopka, Florida 32703
(407) 886-2000 Toll free: (800) 940-2666
Fax: (407) 886-8300

A subsidiary of Thermo Process Systems Inc. and Thermo Electron Corporation

Write in 199
Don’t make waves

Analysis of water samples for total petroleum hydrocarbons

By James E. Bruya and Andrew John Friedman

The problem with measuring petroleum products in water samples is that the individual compounds that make up these products are generally water insoluble. Each product is a complex mixture of individual chemical constituents that constantly changes from batch to batch and from site to site.

They tend to float on top of water (though occasionally they sink) or they adsorb onto any solid surfaces present within a water column. Usually only a small fraction of a petroleum product is truly water soluble. This means that petroleum hydrocarbons will often be present as a sheen on top of a water phase or they will be adsorbed onto any suspended particulates present within a water column. The material actually present in the water phase may be the water soluble portion of the petroleum product or can be oxidized hydrocarbons either from naturally occurring sources or from the degradation of the petroleum product itself.

Because of the possibility that the petroleum contamination can be associated with any or all of these multiple phases, standard analytical methods require extraction of both the water and the container in which it was sent. This means that the laboratory analyzes everything in the sample container.

It is important for anyone using an analytical laboratory to be able to review the analytical data. The current system functions such that the standard lab does not receive the information necessary for them to determine if the data are being used correctly.

There are several considerations to review analytical data to assure that the information received addresses the issues of concern at the site.

What happens when a petroleum product hits a water layer?

The old adage, “oil and water don’t mix,” applies well to petroleum products and groundwater. Petroleum products are composed primarily of hydrocarbons (alkanes, alkenes, aromatics) with low levels of oxygen, nitrogen and sulfur-containing compounds (hetero-atom-containing compounds). Except for the low molecular weight alkanes (pentanes...
and hexanes) these compounds are insoluble in water. The alkenes are slightly more water soluble than the alkanes and the aromatics are even more water soluble.

Benzene, toluene, ethylbenzene and the three xylenes (o-xylene, m-xylene and p-xylene) are the most notorious and most water soluble of the aromatic hydrocarbons.

The vast number of hetero-atom-containing compounds present in petroleum products, especially in degraded petroleum products, can be much more water soluble than their hydrocarbon counterparts. The identification and quantitation of these hetero-atom-containing hydrocarbons can be virtually impossible using standard analytical techniques. These compounds are usually present at low levels, they are chemically labile, their presence can vary from sample to sample and from site to site and it is difficult to obtain appropriate analytical standards.

Figure 1, left, shows a typical 8015-type gas chromatographic (GC) trace of a crude oil pumped from an oil field in the Cook Inlet of Alaska. The dominant feature to notice is the pattern of 20 evenly spaced peaks. These are the n-alkanes and are the dominant compounds present in virgin crude oils. Many of the petroleum products made from crude oil will also show this dominance of the n-alkanes. The branched and cyclic alkanes and alkenes, as well as the aromatics, alkylated aromatics and hetero-atom-containing compounds make up the rest of the small peaks.

When crude oil comes into contact with water, only a small portion of the

Continues on page 46→
Where to draw the line

Hazardous? Non-hazardous? Which regulations apply to what?

By Kevin M. Bonzo

While service stations, utilities, industrial facilities and others strain to weather the burden of underground storage tank (UST) corrective actions, consultants, contractors and waste handling facilities continue to harvest a bonanza of remedial work. The remediation business continues to emerge as a significant growth industry, fueled by a profusion of environmental regulation.

Although intimidating, the regulations generated under the rulemaking authority of the Environmental Protection Agency (EPA) are the backbone of the industry and offer opportunities for those businesses poised to take advantage of their effects. Therefore, a working knowledge of the regulations is tantamount to success regardless of which side of the cleanup you’re on.

The corrective action mandates of RCRA (Resource Conservation and Recovery Act) Subtitle I, are responsible for a great deal of the recent attention given to the management of hydrocarbon contaminated soils (HCS). When the option of choice is simply “hog and haul” to the nearest landfill, a minimum amount of regulatory expertise is required for waste characterization. However, waste soil management decisions become increasingly complex in cleanups at large industrial facilities where a frightening assortment of contaminants, manufacturing processes, use of product/waste storage units and historical site operations must all be considered before sending in the excavators. Complicating this process is the bewildering medley of state and federal regulations.

Individual states have taken a variety of approaches to the regulation of non-hazardous solid wastes, including the management and disposal of HCS. Some states have enacted stringent rules which require handling of certain HCS as hazardous waste. Interestingly, the disposal of contaminated waste soils may either be exempt from regulation, regulated as a solid waste or fall under hazardous waste regulations. The hazardous category may be
further divided, depending on whether the hazardous waste soil may be directly land disposed or requires treatment prior to disposal.

Some states permit various methods of treatment which effectively change the regulatory status of contaminated soils. Treatment of HCS to specified “clean standards” is permitted in some states so that the treated soil is no longer considered to fall under the solid waste regulations. Similarly, on-site stabilization treatment of hazardous waste soils may be approved through an “agency-sanctioned” RCRA closure or corrective action.

Regardless of what state you are in, remember to “read before you dig.” Consider the following steps:

Sources of information

All the participants in a cleanup project must first understand it is impossible to ask or answer too many questions about the site. The first thing everyone wants to know is who or what is driving the cleanup in the first place.

Although more and more businesses are recognizing the need to voluntarily clean up their back yards, still, more often than not, remediation activity is fueled by some regulatory agency pressures or other legal means. Regardless of how the regulatory agencies compel industries to undertake remedial work, one certainty is that a paper trail or administrative record of official agency activities has been compiled along the way and should be available for review.

These documents often describe the agency’s concerns, summarize historical compliance problems which resulted in the formal action and provide technical insight into the nature of the contamination—all of which is valuable information to proceed with the cleanup.

If more than one firm is involved in the project, it is beneficial to everyone if they share information—site characterizations, closure plans, remedial investigations, feasibility studies or other documents that may bear on the ultimate success of the project. Such documents are typically submitted to regulatory agencies for review and comment—and often include special terms attached to the final report as a condition of approval.

For example, an approved closure plan may require contaminated soils to be managed as hazardous waste if certain metals are present at statistically significant levels above background or if organic constituents are detected above the analytical detection limit.

If the cleanup is a voluntary undertaking with little or no agency oversight, responsibility falls on the owner/operator to collect and provide as much information as possible about the site. The disposal firm must ask all the right questions, conduct an on-site audit or field verification and document everything.

Source of contamination

Whereas any one of a million organic or inorganic contaminants may be present in soil generated through a remedial action, the contaminant and

Continues on page 10→

What is it, and where did it come from?

Someday you may be asked to clean up someone else’s spill.

Often, in the mad rush to satisfy state or federal regulators, characterization and identification analyses are overlooked. After the regulators are gone, questions come up like: “Was it all ours?” or “Just how old was it?”

It is usually too late to ask these questions because all of the evidence needed (oil sheens, contaminated soils) has been removed.

Friedman & Bruya, Inc. are experts in the identification and fingerprinting of petroleum products. There are simple, inexpensive tests that can be run to provide information that can be used next year or the year after to figure just what was present and where it came from.

Call 1 - (800) 487-8231
for more information.

FRIEDMAN & BRUYA, INC.
ENVIRONMENTAL CHEMISTS

Petroleum Product Identifications
Expert Witnesses • Soil and Water Testing

Write in 055

January-February 1992 Soils 9
Draw the line, from page 9

its concentration in the waste soil is not nearly as important as how and from where did the contaminant originate. Management of waste soils under RCRA is a risky undertaking when disposal decisions are based on contaminant concentration alone. Consider not only the source material, but the source unit (tank? pipeline?) as well.

Analytically “clean” soils may be listed hazardous wastes. Soils which exceed the limit for benzene may either be a regulated hazardous waste—or not—depending on the regulatory status of the tank which leaked. Don’t let yourself get caught up in the “numbers game” before considering all regulations, policies and agency rule interpretations which ultimately govern disposal.

Evaluate how the storage of the material and the source unit is regulated. RCRA Subtitle I (40 CFR 280) establishes the technical standards and corrective action requirements for owners and operators of USTs. Pay particular attention to what a UST isn’t, such as a “tank used for storing heating oil for consumptive use on the premises where stored” and other exclusions to these rules.

A tank excluded by the UST rules is not afforded the special exemption incorporated into the TCLP (Toxicity Characteristic Leaching Procedure) rules (see 55 FR 11798, March 29, 1990). A last minute drafting change specifically exempted petroleum-contaminated media and debris that fail the test for the toxicity characteristic of 40 CFR 261.24 and are subject to the corrective action regulations under part 280 of this chapter. This exclusion was clarified in a final rule correction (55 FR 26986, June 29, 1990) which noted that the exclusion applies only to petroleum contaminated media and debris which exhibit toxicity characteristics for any of the new organic constituents and are subject to corrective action under part 40 CFR 280.

Essentially, contaminated soil generated from corrective action measures involving a Subtitle I-regulated tank would not be considered a hazardous waste under federal rules even if the TCLP extract for benzene exceeded the regulatory threshold of .5 mg/l. On the other hand, that same soil would be a hazardous waste if lead content exceeded the regulatory threshold of 5 mg/l.

Although this exclusion was made in recognition of a potential national capacity shortage for disposal of HCS as hazardous waste, the peculiar aspect of this exclusion is why the EPA would require such a generator to conduct a TCLP analysis for organics in the first place!

RCRA Subtitle C (40 CFR 260 et seq.) establishes the hazardous waste rules. Soil remediation involving hazardous wastes requires unique regulatory oversight for management of residuals. An evaluation of potential contaminant sources must be conducted before a waste soil management program can be developed.

Contaminants may have originated from listed hazardous wastes, including those commercial chemical products found in 40 CFR 261.33. Careful attention to section (d) of this reference reveals that contaminated soils resulting from the cleanup of a spill of any commercial chemical product or manufacturing chemical intermediate having the generic name listed in paragraph (e) or (f) of this section would be a hazardous waste.

For example, remediation of soil contaminated by a release involving technical grade benzene (U019) would generate waste residuals retaining this hazardous waste number. However, this assumes that the waste soil contains the hazardous waste as described in EPA’s “contained-in” policy.

The basis of this policy recognizes that environmental media, such as soil and groundwater are not normally considered as waste materials. As such, the mixture rule (see 40 CFR 261.3) does not apply to mixtures of listed hazardous wastes and environmental media.
Soils that contain the waste in question (benzene, in this example) must be managed as hazardous waste—although the concentration level is somewhat open to debate.

As a rule of thumb, concentrations in excess of the method detection limit, for non-naturally occurring organic constituents, may be sufficient to require such material to be managed as hazardous. Decisions on such technical matters are seldom consistently applied by different district or regional offices of regulatory agencies.

What about PCBs?

Management of soils contaminated with polychlorinated biphenyls (PCBs) can be a complicated undertaking. Classification of such soils for disposal must not be confused with the cleanup standards required by the PCB spill cleanup policy found at 40 CFR 761, Subpart G.

To begin the analysis, the site’s operating history must be thoroughly evaluated, keeping in mind critical regulatory dates on which various TSCA (Toxic Substances Control Act) regulations were promulgated. The disposal of soils contaminated by pre-February 17, 1978 spills of untested mineral oils (which presumably contained PCBs) may be permitted in a sanitary landfill without consideration of the PCB “dilution” rule and providing the resultant PCB concentration in the soil is less than 50 mg/kg as required by 40 CFR 761.60 (a) (4).

However, beginning in 1978 (with the promulgation of TSCA regulations) the prohibition on dilution is operative and the concentration of PCBs in the spiked material must be evaluated.

As defined under TSCA (see 40 CFR 761.123) the term, “spill” requires that the concentration of PCBs spilled is determined by the PCB concentration in the material spilled—as opposed to the concentration of PCBs in the material onto which the PCBs were spilled.

This definition further states that where a spill of untested mineral oil occurs, the oil is presumed to contain greater than 50 ppm (parts per million) but less than 500 ppm PCBs and is subject to the relevant requirements of the spill cleanup policy. Similarly, the waste contaminated soil would also be subject to the disposal requirements for greater than 50 ppm contaminated soil regardless of the actual PCB concentrations.

Further complicating any analysis of historical PCB contamination are recent administrative decisions by the U.S. EPA regarding two cases. Standard Scrap Metal Co. and City of Detroit Public Lighting Dept., whereby the prefatory note to 40 CFR 761.60 (which contains the exemption for pre-February 17, 1978 disposal of PCBs) was closely examined. Briefly, these rulings indicate that the scope of the exemption applies only to PCBs that were placed in a “disposal site” rather than “spilled” prior to February 17, 1978. The offshoot of these rulings may affect the regulatory classification of pre-1978 spill cleanup residuals and application of the dilution rule. Stay tuned.

In the spring of 1991, TSCA enforcers took on three big league PCB players, namely, General Motors Corp., Waste Management Inc. and Browning-Ferris Industries. The complaint, filed by EPA in March 1991, alleges that the two waste disposal facilities accepted PCB-contaminated sludges which should have been incinerated in a TSCA-regulated facility. The waste sludges were supposedly contaminated by PCBs in hydraulic oils used in the Messena, N.Y. GM plant. Hydraulic oils containing greater than 500 ppm PCBs are required to be incinerated. So too, are sludges and soils contaminated by such oils regardless of the resultant concentration after dilution. In their defense, a spokesperson for Waste Management, Inc., was quoted in the Wall Street Journal saying, “We can’t be policemen to the world.” Unfortunately, this is exactly what

Continues on page 51

PAVING THE WAY TO SOIL REMEDIATION

THE PROBLEM

The former Johnson Steel and Wire Company site in Worcester, Massachusetts, presented a challenge to both the Massachusetts Department of Environmental Protection (DEP) and Intratrans Container, Inc., who wanted to develop the site as a major intermodal rail terminal in Worcester. The soil was contaminated with both petroleum products (fuel oil, and high levels of lead). American Reclamation Corporation (AmRec) was contacted and asked to solve the problem.

THE SOLUTION

Through the AmRec Process, AmRec demonstrated that the soil from the site could be recycled into an environmentally safe asphalt paving. After review and approval by DEP, over 4,000 tons of soil and 8,000 tons of other recyclable materials were screened, crushed and blended to produce 12,000 tons of asphaltic concrete. Then, about 14 acres of the site were covered with the recycled paving made from the AmRec Process. By using the recycled asphalt, not only was $800,000 saved in paving costs, but a major environmental problem was transformed into a safe and productive site.

AMERICAN RECLAMATION CORPORATION

225 TURNPIKE ROAD • SOUTHBORO, MASSACHUSETTS 01772

508.624.7006

Write in 148

January-February 1992 Soils 11
Looking for pesticides

Advances in gas chromatography equipment and software characterize chlorinated pesticides in soil

The introduction of portable gas chromatography (GC) devices with higher range temperature controls now means that volatile as well as semi-volatile compounds can be analyzed with the same instrument. This means high molecular weight pesticides and polychlorinated biphenyls (PCBs) can now be analyzed.

Over the past decade, the main application of portable GCs has been the detection of volatile hydrocarbons. The growth in popularity of GC use has been enhanced by the flexibility, improved accuracy and lower cost afforded by on-site measurements. Until recently, portable GCs with photoionization detectors (PID) have either had no temperature control or limited ability to control temperatures up to 50°C.

While techniques such as direct injection and headspace analysis are common for volatile hydrocarbons, different techniques are required for non-volatile hydrocarbons. The most suitable technique for quantitative removal of organochlorinated pesticides from soil or water is probably solvent extraction.

The use of pesticides is an integral part of agriculture in developed countries to destroy or control weeds, fungi, insects and other pests. The widespread use of agricultural pesticides has created additional problems due to runoff and subsequent contamination of substantial quantities of surface water as well as groundwater tables.

In addition, there are numerous sites where chlorinated pesticides have been stored or used—such as areas surrounding airplane hangars where these pesticides are loaded for aerial spraying. One problem with the chlorinated pesticides is that they do not easily break down and thus, remain in the environment for a long time.

The Spittler extraction procedure is a simple field method which appears to be applicable for a variety of pesticides in a number of different matrices, including soil and water.

It involves taking an 800 mg soil sample or a 10 milliliter (ml) water sample, adding one cubic centimeter (cc) of a 1:4 water methanol mixture and adding one ml of hexane. Shake for 30 seconds, let stand for 30 seconds (if the mixture emulsifies, then centrifuge the sample). Inject the top layer (hexane) into the GC. This method was originally developed for the analysis of PCBs. As a result, tests were performed on the extraction efficiency of DDT and some of its isomers to determine the viability. Tests were run at the one to 10 parts per million (ppm) levels since the action level for dichloro diphenyl trichloroethane (DDT) is presently two ppm. The efficiencies of extraction from soil spiked with DDT were 95-99 percent.

Samples were analyzed on site with the portable GC but grab samples collected for laboratory analysis were stored in glass jars and analyzed within a few weeks of the time of collection. All soil samples were dried prior to weighing.

Field analyses were performed using an HNU Systems model 311 GC equipped with a PID. Following the extraction, a one µL sample of the hexane layer was injected into a capillary injector and separated on a 15 meter by 0.32 millimeter capillary column which was main-

J.N. Driscoll is founder and president of HNU Systems of Newton, Mass. M. Whalen is application chemist, C.D. Wood, Ph.D., is manager of research and development and M. Duffy is product manager of HNU Systems. C.A. Cihak is a chemist for the Army Corps of Engineers.
ttained at 180°C. The carrier flow rate was 15 ml per minute of ultra high purity nitrogen. The GC was calibrated with a DDT standard. A dichloro diphenyl dichloroethane (DDD) standard was also run to verify that no peak overlap occurred with DDT.

A quality control (QC) protocol was maintained for the analytical results obtained in the field which consisted of analysis of a standard to determine percent recovery and analyzing duplicates on sample extracts to verify analyst reproducibility. The instrument was recalibrated at the beginning of each morning and afternoon shift and at any change in condition.

Laboratory analyses for a number of field samples were performed with a GC equipped with dual electron capture detectors (ECDs) and a retention index monitoring (RIM) system. The RIM system is a tool for the automatic interpretation and identification of complex mixtures based on a unique pattern recognition algorithm for search of index peaks. Compound identification is based on two columns of different polarity.

Separations were accomplished on a pair of 0.32 mm by 25 meter (per identification) fused silica capillary columns. The oven temperature for these analyses was 150°C. Both column inlets were installed into a single column injector.

Identities were made with Micman identification software which compares the results on both columns to a pre-established library and then lists results only when the compound is found on both columns. Identifications were based on absolute retention time.

Continues on page 14→

Fig 2: DDT in soil analysis—field vs. lab results shows correlation coefficient of 0.998.

ON-SITE TPH ANALYSIS

THE GAC PORTABLE TPH ANALYZER FOR RAPID DETERMINATION OF HYDROCARBON CONTAMINATION IN SOIL AND WATER

- Two models available:
 TPH Standard—reports total hydrocarbons
 TPH-Plus—reports aromatic and aliphatic hydrocarbon concentrations individually

- Portable, ruggedly constructed, battery operated

- Our new Field Extractor Kit provides TPH analysis on-site or in the laboratory within 10 minutes

- Both models display concentrations digitally in mg/liter over a broad concentration range

- Infrared based, EPA compatible

For details, contact Ed Gosart. Phone-203-852-8999 Fax-203-838-1551

140 Water Street ▲ South Norwalk ▲ Connecticut 06854

Write in 176

January-February 1992 Soils 13
Looking for pesticides,
from page 13

Sampling was accomplished using stainless steel coring tools to depths ranging from zero to 19 inches. Surface samples were collected with stainless steel spatulas. Soils recovered from the coring device were placed in a stainless steel bowl and mixed thoroughly prior to analysis. All equipment was decontaminated between sampling depths and locations.

In the absence of any regulatory cleanup standard, the Environmental Protection Agency's (EPA's) proposed corrective action level of two ppm was used as the guideline.

The soil was manually excavated and contained in 55-gallon steel drums. Upon completion of the first excavation lift, the bottom of the pit was sampled. Excavation proceeded to areas with concentrations of DDT at levels exceeding two ppm. This process was repeated until all concentrations in the pit were less than two ppm. The soil was disposed in a permitted hazardous waste landfill.

A typical chromatogram of a field sample measured as 10 ppm DDT is shown in Figure 1, page 13. A number of field samples were returned to the U.S. Army Corps of Engineers, Missouri River Division laboratory, for verification of results for DDT using SW-486 method 8080.

The agreement between the field data and the laboratory results was excellent with a correlation coefficient (r²) of 0.998 (see Figure 2, page 13). The regression equation which describes the relationship between the two variables is: y=0.85x + 0.295. A three-dimensional plot of the results is shown in Figure 3, above left. The X/Y axis is the plane of the hazardous waste site while the Z axis is the concentration found—expressed in ppm.

The three-dimensional image is an easy way to visualize the spatial profile of pollutants at the site.

The present method of testing for DDT, which has a detection limit of about 0.2 ppm, is satisfactory for the current action level of two ppm. The method could be improved by changing the extraction solvent from hexane (IP=10.18) to pentane (IP=10.35) which has a considerably lower response to the PID. Tests have shown that DDT is still extracted with this solvent with an efficiency exceeding 95 percent. Since pentane has a lower response on the PID (10.2 eV) than hexane, it is possible to use range one, which is ten times more sensitive than range two, as required with the stronger response of hexane. The chromatogram in Figure 4, (above), in range one demonstrates the improved results obtained.
with pentane. The detection limit with pentane extraction can be reduced to < 0.05 ppm.

The chromatogram in Figure 1, page 13, with the PID indicated that the major peak was DDT, although a number of minor peaks were noted.

The chromatogram in Figure 5, (right), demonstrates both the sensitivity of the ECD for organochlorinated compounds as well as the unique dual column sensitivities of the Micman software. In Figure 6 (below), other chlorinated isomers of DDT were identified along with low levels of malathion—which was not supposed to be present at this site. Note that the peaks for DDD and dichloro diphenyl ethane (DDE) elute before DDT in Figure 2, page 13, but the lower sensitivity of the PID on range two makes these peaks appear quite small. The peaks with a longer retention time than DDT do not appear to be pesticides since there was no response with the ECD. They are hydrocarbon impurities in the solvent. The detection limit for DDT with the ECD was less than one ppb (part per billion).

This particular hazardous waste site had been visited twice with samples sent for laboratory analysis. On the third visit with the on site analysis, additional areas of contamination were observed that had been undetected previously, in spite of 44 sample analyses. This type of discovery is not unusual and serves to highlight the benefits of using on site analysis equipment.

The combination of the Spittler extraction technique with a portable GC equipped with a PID results in good field analysis for DDT in soil. These data were in high correlation with laboratory data. The method is useful to one-quarter of the two ppm action level with hexane as the extracting solvent and to 1/40th of the action level with pentane. And, this method demonstrates that volatile and semi-volatile compounds can be run on the same GC with a PID.

The original method was described for the analysis of PCBs. Since PCBs also respond with excellent sensitivity, these species could also be determined with a GC. An obvious advantage of using the PID for analysis of PCBs is that the response does not vary with the degree of chlorination like the ECD, thus it could provide a better quantitative method for the various PCB isomers.

Write in 502 for more information

When you think of

BIOREMEDIATION

think of

The Brand Name

Offering a nationwide network of locally owned and operated companies certified in ALPHABIOREMEDIATION technology.

For the certified ALPHABIOREMEDIATION company in your area call 818-524-8811

Write in 167
January-February 1992 Soils 15
Reduce sampling errors

Careful extraction method can improve accuracy of soil analyses by as much as an order of magnitude

By Ellen G. Cool

Most remediation events begin with a sampling program to delineate the nature and extent of the affected area. Most investigators realize that the greatest potential for sampling errors occurs in the field, in the actual collection process. Attention to detail and quality control is essential to obtain accurate characterization of a site.

Subsurface samples may be collected from a backhoe bucket used to excavate a test pit or from a split-spoon sampler driven by a drill rig. A portion of the soil retrieved by one of these methods is generally transferred into a clean glass jar or vial, packed with ice and shipped (with appropriate documentation) to a laboratory for analysis of the chemical parameters of concern.

Laboratory personnel perform the analysis by placing a portion of the sample in a fluid which chemically extracts the contaminants from the soil. If an organic chemical such as a chlorinated solvent or a fuel-related compound is the contaminant of concern, the extracting solution is generally methanol. Freon may be used for analysis of total petroleum hydrocarbons.

The extract is analyzed and the concentration in the extract is converted to a concentration of contaminant in the extracted soil on a weight per weight basis.

Soil investigation programs are generally designed to identify the source of the release, to determine whether remediation is warranted and to determine the most feasible and cost effective remediation method. Specifically, engineers and scientists rely on the results to address some of the following questions:

- What is the overall mass and concentration of the contaminants?
- What are the relative proportions of contaminants present at the site? Can the ratios of contaminants be used to gain insights regarding the source of the release or the age of the release? For example, weathered fuel may be distinguished from a more recent spill by the decrease in the proportion of the lighter volatile hydrocarbons.
- Is it cost-effective to excavate the contaminated soil or feasible to remediate it in situ?
- Can the soil be remediated by vapor extraction?
- What health and safety precautions may be necessary if the soil were excavated or if other intrusive remedial construction were performed?
- Could excavated soils be accepted by an off-site disposal contractor such as an incinerator, sanitary landfill or hazardous waste landfill?
- How leachable are the soil contaminants and do they threaten groundwater beneath the site?
- What is the risk to human health and the environment posed by the in situ contamination?

If a remedial system is already in place and operational, soil samples may be periodically collected and analyzed to monitor the progress of the cleanup.

Quality assurance and quality control (QA/QC) procedures issued by the U.S. Environmental Protection Agency (EPA) and other agencies govern the methods and protocols used in most chemical testing laboratories. Most labs adhere to these procedures and have a commendable record of reporting accurate results. But, the lab can only report on the samples they are given, so the integrity of the sample is crucial.

As soon as the sample is removed from the subsurface and exposed to the atmosphere, volatile compounds begin to be released into the air. As the field sampler selects a portion of
the material retrieved in the backhoe bucket or split spoon, the soil is further disturbed and still more volatile compounds are lost from the sample.

If the investigation protocol requires that the sample be placed in a 40 ml Teflon-capped vial, the sampler usually has to crumble or deform the sample even further to fit it through the small neck of the vial. In order to most easily fill the vial, the field investigator may also prejudicially select a portion of soil which is free of pebbles, cohesive material or other particles which do not readily fit through the opening.

And, once in the vial, volatile organic compounds originally dissolved in the soil moisture or adsorbed to the soil particles volatilize into the pore spaces until equilibrium between the soil and the air in the vial is reestablished. The net result is that the soil which ends up in the capped and labeled vial that is shipped for chemical analysis may be quite different from the parent soil remaining in the ground.

As an example of how standard tests of soil contamination may be misleading, an industrial site in eastern Massachusetts offers a case in point. Soil and groundwater contaminated with chlorinated solvents was recognized as emanating from the location of a former vapor degreaser. Initial borings through the floor slab and a number of groundwater monitoring wells identified the primary contaminant as tetrachloroethylene (PCE) with trichloroethylene (TCE) and breakdown products of these compounds as subsidiary contaminants.

The lateral extent of contaminated soil in the vicinity of the former degreaser pit was evaluated by a soil gas survey. During this procedure, small diameter probes were driven through holes drilled through the floor slab and the vapor extracted from these probes was analyzed on site using a portable gas chromatograph. The highest concentrations of total volatile organic compounds were measured within a radius of approximately 50 feet from the presumed source. This area was interpreted to represent the area of contaminated soil which was the chief source of the groundwater contamination across the site. A limited number of soil samples collected by conventional split spoon recovery were also analyzed. PCE and TCE were confirmed as the primary contaminants at the vapor degreaser location. Groundwater beneath the contaminated soil was measured to be approximately 10 to 12 feet beneath the floor slab.

Due to the large presumed volume of contaminated soil, excavation was originally ruled out as a feasible remedial alternative. Instead, the original plan to clean up this PCE- and TCE-contaminated soil called for installation of a vacuum extraction system.

As the design for the vacuum extraction was refined, it became apparent that more detailed information regarding the distribution of the contaminants in the soil was necessary. In order to estimate the time required to reach the remediation goal, an accurate measurement of the in situ contaminant concentrations was essential.

In addition, because the total cost of the remedial program was predicted to be principally a function of the amount of

Continues on page 18
Reduce sampling errors, from page 17

carbon used to remove the contaminants from the effluent gas, the total mass of contaminants in the soil became a critical parameter. Therefore, a pilot study for the vacuum extraction system was developed which included intensive and comprehensive sampling of the sub-slab soils.

Prior to installation of the pilot vacuum extraction probes, continuous split spoon soil samples from both the vadose zone and the upper part of the saturated zone were retrieved at each probe location.

Recognizing that loss of PCE, TCE and related compounds during the field sampling could seriously compromise the results of the study, special field procedures were implemented to minimize volatile loss. Large mouth (250 ml) glass vials with Teflon septae in the caps were used to collect all samples. These vials were pre-numbered, labeled and filled with approximately 100 ml of reagent grade methanol. The vials were weighed before and after the methanol was added so the precise amount of methanol could be measured and recorded.

As soon as the split spoons were retrieved and opened, field personnel removed a portion of the soil with a stainless steel spatula, placed it intact into the vial and capped the container. Extreme care was taken not to splash any of the methanol and to submerge the sample completely in the liquid. By using the wide mouth vial, the sample was minimally disturbed. The effect of placing the sample into the methanol was to short-circuit the analytical protocol and preserve the integrity of the sample. Instead of performing the solvent extraction in the laboratory, it was done in the field. When the samples were received by the lab, methanol was removed by syringe through the Teflon septum and injected directly into the gas chromatograph, with no exposure to the air.

In several locations, a “conventional” sample was collected adjacent to the first sample for comparison with the field extraction method. When the analytical results were compared, it was apparent that the concentrations of the samples preserved in the methanol were approximately an order of magnitude higher than the unpreserved samples. For example, a pair of samples collected from eight to 10 feet below the slab was found to contain 790,000 ppb (parts per billion) of PCE in the unpreserved sample, but 6,400,000 ppb in the adjacent preserved sample.

Overall, the results of the pilot test and the soil sampling program showed that not only were the contaminant concentrations locally higher than anticipated, but the volume of contaminated soil was also much less than expected. The soil borings advanced beyond a distance of approximately 15 feet from the source encountered only clean soil above the water table. The earlier soil gas survey had reported “hits” in these areas. The methanol preservation method added confidence to lab reports that contaminants were not detected in these peripheral areas. Therefore, the previous soil gas survey results beyond the 15-foot radius of the source were interpreted to reflect contamination derived from the groundwater plume and not from the overlying soil.

The implications of these results were highly significant. At this site, excavation of the contaminated soil became a more tractable, cost-effective and speedier remedial alternative. Consequently, the remedial response plan which had previously been submitted to the state regulators was revised. The new plan specified excavation of approximately 300 cubic yards of soil and construction of a waste soil pile to be treated by soil venting. Predicted cleanup time was significantly reduced.

The data from this investigation were also used in another facet at the site. In one of the monitoring wells located near the former vapor degreaser, a dense, non-aqueous product liquid (DNAPL), consisting of PCE with approximately 15 percent TCE, was detected. The presence of DNAPL at other locations within the contaminated area had been suspected, but not confirmed.

During the pilot study, the porosity, moisture content and bulk density of the soil was measured at several locations, in addition to the concentration of PCE and TCE. These physical properties were used in conjunction with the distribution coefficients for PCE and TCE to calculate the masses of these compounds within each of the soil phases: adsorbed on soil particles, in soil vapor and in the pore liquid.

Although DNAPL was not visually apparent in some of the samples, the amount of PCE calculated to be present in the pore liquid exceeded the solubility of PCE in water. Therefore, PCE NAPL was inferred to be present in specific samples. These results were critical to the design of the groundwater pump and treat system which was installed at the site.

The soil sampling techniques used at this industrial site have wide application to site investigations in general. At this particular site, field preservation of soil samples with methanol permitted a much more accurate and representative evaluation of the nature and extent of PCE and TCE contamination in soil. The field data reliably support the revised remedial design. Had accurate measurements of contaminant concentrations in soil not been available, costly errors or miscalculations may have occurred.

Lessons to be learned from this study are clear. If the total concentration of organic contaminants in soil or the distribution of the contaminants are critical data, then investigators should seriously consider using the field preservation technique. For example, soil cleanup targets typically are based on the potential of the contaminant in the soil to leach into the groundwater and generate aqueous concentrations in excess of the regulated maximum contaminant levels (MCLs). If the actual contaminant concentrations in soils are underestimated (potentially by up to an order of magnitude), then the feasibility of attaining the desired cleanup target may be misconstrued. Similarly, accurate and reliable volatile organic concentrations are needed to effectively design a vacuum extraction system to evaluate the biotreatability of a batch of contaminated soil and to evaluate other remedial alternatives.

When total concentrations of volatile organic compounds are critical to an engineering or a human health risk evaluation, the accuracy of the field sampling should be the best available technology.

Write in 503 for more information
Recycling Alternatives Inc. is a company dedicated to developing innovative processes to recycle waste materials into a marketable product. RAI is committed to finding environmentally compatible solutions to today's and tomorrow's complex disposal problems. We provide turnkey services, managing petroleum waste projects from the initial site assessment through remediation to material recycling. Whether it is thermal desorption, bioremediation, soil vapor extraction, or a ground water treatment, RAI's technical staff provides the most efficient remedial solution for you.

THE ADVANTAGES OF RECYCLING WITH RAI

MINIMIZE LIABILITY
In the recycling process, the soil contaminants are destroyed. As a result, the potential of future liability for the handling of these soils is avoided.

RESTORE SOIL VALUE
RAI's processes convert soils into reusable products for the manufacture of asphalt, road subbase, brick or landscaping material.

PROTECT THE ENVIRONMENT
Recycling soil reduces the dependance on new excavation and its associated impacts. In addition, recycling of petroleum-contaminated soil prevents the material from entering the solid waste stream, thereby conserving valuable landfill space needed for non-recyclable materials.

IMPROVE PUBLIC RELATIONS
Environmental issues are now a mainstay of the public agenda. Therefore, recycling is essential not only for environmental reasons, but also to cultivate positive public perceptions.

Now that soil management has become a key responsibility in the business sector, you can benefit from the recycling services of RAI. Call us today for more information.

Recycling Alternatives, Inc.

P.O. Box 1896 • Salisbury, MD 21802-1896 • Tel. (301) 860-0268 • Fax (301) 860-0269
Regional Offices: ALABAMA (205) 781-9500 • OHIO (614) 794-3660 • TEXAS (713) 438-3315 • (817) 469-7060
Facilities Locations: Adel, GA, Birmingham, AL, Chestertown, MD, Exmore, VA, Fort Worth, TX

Write in 154
Gambling with financial assurance

There are at least two good reasons not to take chances

By Tom Gallagher, J.D.

How many good reasons do you need to get financial coverage for underground tanks? Well, it’s the law according to the Environmental Protection Agency and that’s the first good reason.

The EPA final rules regarding financial responsibility for regulated petroleum underground storage tanks (USTs) require owners and operators to acquire an allowable financial assurance mechanism to cover clean-up costs and third-party damages resulting from a release of petroleum. The eight financial assurance mechanisms allowed by EPA are self-insurance, insurance or group risk retention coverage, a guarantee with a standby trust fund, a surety with a standby trust fund, a letter of credit with a standby trust fund, an EPA-approved state-required mechanism, an EPA-approved state fund and a trust fund.

Failure to obtain an allowable mechanism by the deadline date subjects both owner and operator to a civil penalty of up to $10,000 per day for each UST not covered.

But, avoiding penalties and expenses of a catastrophic cleanup are not the only incentives for an owner or operator to find an allowable financial assurance mechanism. Under certain circumstances, obtaining such coverage could enable the owner or operator to survive in business—and that’s a second good reason.

Owners who are gambling with the “wait-and-see-what-happens” approach (“Maybe they won’t find me...Maybe my tanks won’t leak...Maybe no one will notice...”) to financial coverage need to understand the second, less obvious good reason to step forward and sign up for coverage.

In 1986, Congress passed the Superfund Amendment and Reauthorization Act (SARA). A part of SARA created a Leaking Underground Storage Tank (LUST) Trust Fund to provide money to states to finance cleanups of releases when the owner or operator of the UST could not be found, or was unable or unwilling to pay. If LUST Trust Fund

Continues on page 22

Tom Gallagher, J.D. is senior program manager for BH&E, Inc., an environmental management, science and engineering firm in Cincinnati, Ohio.
Today, 25 tons/per hour is not enough!
You’ve been losing money at this production rate!

SOLUTION:
TARMAC’S new 50 to 70 tons/per hour Portable Soil Remediation Plants

1. **SOIL FEEDER BIN SYSTEM (Package)**
 - VIBRATING GRIZZLY UNIT covers bin top...prevents large clay chunks and rubble from entering bin.
 - Automatically discharges them to ground.
 - EXTRA WIDE (36”) FEEDER TABLE keeps bin bottom “live”...reduces soil bridging.
 - CLAY SCHREDDER breaks down clay balls.

2. **8.5 DIAMETER ROTARY DRYER**
 - 50 to 70 TONS/PER HOUR
 - Slow gas velocity = less fines carryout

3. **BAGHOUSE & OXIDIZER**
 - 5:4:1 Air-to-Cloth ratio (Baghouse)
 - Top loading bags
 - Minimum 1.5 second retention time (Oxidizer)

4. **CONTROL HOUSE**
 - Mounted on major load or separate

Send us information on the following:
- Portable Soil Remediation Plants
- Stationary Soil Remediation Plants
- Thermal Oxidizers
- Plant Operation Controls
- Load-in/Load-out Recordation
- Control Operation Rooms
- Baghouses
- Rotary Dryers/Kilns
- Evaporative Coolers
- Soil Feed Bins
- Permit Applications

FAX to 816-228-0888

TARMAC EQUIPMENT CO., INC. Soils Division
219 N. 7 Highway • Blue Springs, MO 64014
800-833-4383

Write in 158
Other good reason, from page 20

money is spent on a release, subsection (h) (6) of Section 9003 of RCRA (Resource Conservation and Recovery Act) states that the owner and operator of the UST are strictly liable to EPA or the state for the amount spent. EPA’s interpretation of this subsection can be found in EPA’s Office of Solid Waste and Emergency Response, Directive Number 9610.10, issued October 7, 1988. On page 13 of that directive, EPA says. “Although Section 9003 of RCRA generally allows consideration of whether pursuit of full cost recovery will significantly impair an RP’s (responsible person’s) ability to continue in business, States are precluded by statute from considering this factor if the RP has not complied with financial responsibility requirements in effect at the time.” (Italics added.) So if you fail to show good faith intentions by obtaining an allowable mechanism and if your pockets are empty, don’t expect sympathy and understanding.

The per-occurrence amount of coverage required is $1,000,000 for owners or operators of tanks at petroleum marketing facilities or tanks that handle an average of more than 10,000 gallons per month. Owners or operators of USTs not located at petroleum marketing facilities or which handle an average of 10,000 gallons or less must have coverage of at least $500,000 per release occurrence. Owners or operators of one to 100 regulated petroleum USTs must have an annual aggregate amount of coverage equal to $1,000,000 while those having more than 100 regulated USTs must have an annual aggregate amount of coverage equal to $2,000,000.

EPA employed a phased compliance approach to these financial responsibility rules. Presently, under the federal rules, all owners and operators must have an allowable financial assurance mechanism except for petroleum marketing firms with one to 12 petroleum USTs at more than one facility or fewer than 100 USTs at a single facility—and non-marketers with a net worth of less than $20,000,000.

On August 14, 1991, EPA proposed that the compliance deadline for these presently exempted owners and operators be extended to December 31, 1992.

Various states have also implemented UST programs and have imposed financial responsibility requirements. In order to become an EPA-approved program and thus operate in lieu of the federal program within their jurisdiction, states must have UST rules and regulations which are at least as stringent as the federal rules. State program compliance deadlines vary widely.

As an example, Ohio has one of the 26 EPA-approved state funds. In Ohio, all owners or operators of regulated petroleum USTs are required to have paid into the state fund. The Ohio fund has a deductible amount for which the owner or operator must obtain a second allowable financial assurance mecha-
nism to assure that money will be available to pay the deductible in the event of a petroleum release.

For owners of six or fewer petroleum USTs and the operators of such USTs and for political subdivisions, the deadline to obtain an allowable mechanism to cover the deductible is July 1, 1992. All other owners and operators of regulated USTs in Ohio must presently have such coverage.

If the cost of cleaning up a release from a regulated UST exceeds $1,000,000 and LUST Trust Fund money is used to complete the cleanup, EPA will consider the ability of the owner and operator to stay in business when it considers the amount of money it will try to recoup—only if the owner or operator is in compliance with the financial responsibility requirements. Such a consideration could well allow an owner to stay in business even if total clean-up costs exceed $1,000,000 and there is absolutely no possible way the owner or operator could pay the costs not covered by their allowable financial assurance mechanism. However, if neither the owner nor operator is in compliance with the financial responsibility requirements, current EPA policy calls for full reimbursement of LUST Trust Fund expenditures regardless of how it affects the owner’s or operator’s ability to stay in business.

EPA’s or a state’s approach to cost recovery negotiations can be crucial to the ability of an owner or operator to stay in business. Whether or not the owner or operator is in compliance with financial responsibility requirements can likewise be a crucial factor in whether or not the owner or operator has a chance to stay in business.

Write in 504 for more information

Get Reproducible Results Sampling for VOCs with In-Situ’s LAB IN A BAG

In-Situ Inc. introduces a field-worthy, commercial version of the Polyethylene Bag Sampling System for dynamic head space analysis. This system meets EPA-approved guidelines as an interface between a Total Organic Vapor Detector (TOVD) and soil and water samples contaminated with VOCs, providing the critical edge over other field headspace sampling systems.

If you are involved in site analysis then you should have In-Situ’s Lab In A Bag. For more information on this or any of In-Situ’s products, call 1-800-446-7488.

In-Situ Inc.
The Solutions People
210 S. Third Street
P.O. Box 1
Laramie, WY 82070 USA
FAX: (307) 721-7598

Write in 192
January-February 1992 Soils 23
Proper installation critical to avert future problems

Give tanks a ‘proper burial’

By Mose Chandler

The Environmental Protection Agency estimates it will cost the nation in the neighborhood of $70 billion to comply with their underground storage tank rules. This estimate did not include cleanup costs or long-term testing and record keeping. Over 75 percent of the $70 billion is for new equipment.

While tank, pump and associated suppliers are beginning to feel the upsurge in sales associated with companies’ compliance efforts, the majority of the petroleum marketers have yet to make any drastic moves to change out tanks. Add to this number the ranks of state, municipal and federal tank owners who are just now looking at “Musts for USTs” (EPA’s 1988 introductory summary of the “new” regulations) and you’ve got a large cross section of the two million (or more) registered tanks that will be removed and replaced over the next decade.

All U.S. tank manufacturers produce products today with 30 year warranties. Ensuring that such a warranty is valid and potentially transferable is generally a function of whether the installation instructions were followed by the contractor. Whether the tank is fiberglass or steel, cathodically protected, single or double wall, proper installation plays the greatest role in your environmental compliance future. The single greatest cause of tank failure in the first five years after placement is improper installation.

Mose Chandler is vice-president of Carter Equipment Co., a petroleum distributor in Kansas City, Mo.

More than two million registered tanks will have to be replaced over the next decade to comply with EPA regulatory mandates.

It is not the purpose of this article to debate the respective advantages of fiberglass or steel, nor is it to promote one manufacturer’s tank over another’s. The fact is, with the quality of products available today, any tank is a good buy if properly installed.

Tank backfill material

As with any structure, buried tanks require a good foundation. Covering a tank with backfill creates added weight, which pushes down on the tank top and creates an outward force at the tank side. As the tank is loaded with product, there is also an internal pressure pushing down on the tank bottom and out at the sides. Proper backfill provides foundation support at both bottom and sides to counteract these pressures and transfers the tank load to the surrounding soil.

Without proper support, any tank—whether steel or fiberglass—may be damaged; structural failure or weld breaks can result. Or, the protective coating may be damaged sufficiently for corrosion to develop. Improper bottom support causes the tank bottom to flatten, creating excessive pressures at the corners, which could damage the tank walls or its protective coating.

Industry groups such as the Petroleum Equipment Institute and American Petroleum Institute recommend clean, compacted backfill material. Most commonly used are pea gravel, crushed stone or sand.

Backfilling with pea gravel or crushed stone is relatively foolproof and time efficient. Clean gravel is self-compacting and has generally been washed free of corrosive materials. This eliminates the need for jobsite labor to compact the backfill. The flow characteristics of gravel make it easier to push under the tank for proper bottom support.

Sand must always be compacted. This compaction requirement makes the quality and effectiveness of the tank backfill support more labor intensive and less predictable than gravel. If sand backfill is used, an independent soil technician/engineer must verify that the sand has been compacted to a minimum 90 percent standard proctor density. While the material cost of sand may be less than gravel, the labor to properly compact the sand adds around $6 per ton to the cost.

Native soils should never be used to backfill under and around tanks or horizontal piping. Dirt, clay and other native soils cannot be reliably compacted. If tanks are being installed in a sandy area, it is necessary to hire a soils engineer to verify that the excavated sand meets the backfill material specification. Backfilling a new installation with previously used backfill

automatically voids all manufacturer’s warranties.

Tank anchoring
There are four primary methods of anchoring tanks in the course of an installation:
1) deep bury method
2) deadman anchors
3) anchor pad
4) mid anchoring

Tanks require anchoring to compensate for natural buoyancy. Tank buoyancy forces occur when a high groundwater condition develops and the tanks are partially or totally empty. Under these circumstances, if the offsetting ballast weight of backfill material on top of the tank (or attached to it with a mechanical anchoring configuration) is less than the buoyancy forces on the tank, the tank will float. The tank industry standard for an anchoring safety factor is 1.2:1 for a worst case condition (groundwater to grade and tank empty). This means that there should be at least 20 percent more ballast weight on the tank (or attached to it) than the maximum uplift forces.

Many people believe that because a tank is made of fiberglass it automatically requires anchoring. However, the maximum tank buoyancy forces greatly overshadow tank weight, whether fiberglass or steel. To calculate tank buoyancy, a good rule of thumb is to multiply the tank volume by 8.33. Therefore, a 10,000 gallon tank will develop 83,300 pounds of uplift when it is fully immersed in a high groundwater condition. If tank weight were the only offsetting ballast, the weight of the steel tank

Continues on page 26→

Rotron blowers provide soil solutions.

EG&G Rotron regenerative blowers have proven themselves in years of environmental service to be quiet, compact, and reliable. These direct-drive low-maintenance blowers require no lubrication.

They have explosion-proof motors, spark-resistant construction, and adaptable vacuum performance curves. Environmental applications include: Soil remediation.
- Landfill degassing.
- Aeration.
- Bio-remediation.
- Radon removal.

Rotron also has accessories such as moisture separators available.

Call or fax a request for a copy of A Consultant’s Guide to Environmental Applications.
A 10,000 gallon tank will develop 83,300 pounds of uplift when it is fully immersed in high groundwater.

"Proper burial," from page 25

(8,000 pounds) would compensate for less than 10 percent of these forces—while the weight of a fiberglass tank (2,600 pounds) would offset a little over three percent. The remaining uplift forces must be offset by tank overburden (deep bury) or a mechanical anchoring system (mid anchors, deadman anchors or anchor pad).

Depending of the burial depth (from tank top to finished grade) backfill material on top of the tank can offset all or a portion of the buoyancy loads. Dry gravel or sand both provide similar anchoring deadweight—about 95 pounds per cubic foot. However, if the backfill material over the tank is submerged in water, the net ballast weight of the backfill is decreased to about 60 pounds per cubic foot by the buoyant force of the water. Using a thicker concrete traffic pad at grade is typically not a cost effective method to increase the ballast weight over the tank. While concrete submerged in water weighs 50 percent more than gravel, it costs about ten times more. So, it’s usually less expensive to bury the tank deeper and use the backfill material for ballast.

Ignoring tank weight for a moment, the tank internal diameter is a key variable in determining the added safety factor provided by the backfill over the tank. As a general rule of thumb for multiple tanks installed in the same excavation, when the tank burial depth exceeds 60 percent of the tank internal diameter, the backfill material directly over the tank weighs 20 percent more than the maximum buoyancy force (safety factor equals 1.2:1). The rule of thumb for a single tank in an excavation is that the burial depth must exceed 50 percent of the tank diameter.

At shallower burial depths where high groundwater conditions may occur, a mechanical anchoring system is needed to achieve a 1.2:1 safety factor for the worst case condition. It is the responsibility of the tank owner or his technical representative to determine if mechanical anchoring is required at a specific jobsite. All potential sources of water (underground water table, rainwater runoff, etc.) should be considered. If water can accumulate over the tank top, most tank manufacturers recommend the tanks be mechanically anchored unless the tank burial depth provides sufficient ballast.

The need for a mechanical anchoring system is more likely for tanks with larger internal diameters because the buoyancy forces are more concentrated in a smaller area. Although lighter than a steel tank, a 10,000 gallon capacity fiberglass tank gains additional safety factors because the tank diameter is less than a steel tank. Fiberglass tanks have an internal diameter of 92 inches, while most steel tanks are 96 inches in diameter—some are 100 inches in diameter.

So, when the effects of both tank weight and tank internal diameter are considered, anchoring safety factors are comparable for fiberglass tanks (92 inch) and steel tanks (96 inch). Steel tanks larger than 100 inches in diameter have lower anchoring safety factors and therefore are more likely to require mechanical anchoring systems. This is true for all methods to anchor underground tanks.
TANK INSTALLATION SUMMARY—FIBERGLASS VERSUS STEEL

<table>
<thead>
<tr>
<th>TANK HANDLING CHARACTERISTICS</th>
<th>FIBERGLASS</th>
<th>STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of 10,000 gallon tank</td>
<td>2,600 lbs.</td>
<td>8,000 lbs</td>
</tr>
<tr>
<td>Coating repair for superficial chips/scratches</td>
<td>None</td>
<td>Required</td>
</tr>
<tr>
<td>Pipe Stiffness rating</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

EXCAVATION LOGISTICS
- Excavation to be free of hard or sharp objects: YES
- One foot sand/gravel bottom requirement: YES
- Bottom quadrant tank support requirement: YES
- Backfill requirement with concrete slab (min.): 12 in.
- Sidewall and tank to tank clearance (min.): 18 in.
- Remove dirt clods and foreign materials before placing tanks: YES

PRE INSTALLATION TESTING REQUIREMENTS
- Permanent plugs in all unused openings NO
- Maximum torque rating of fittings (in foot pounds): 2000
- Test with 5 psi air pressure aboveground soap test: YES
- Do NOT leave tanks unattended while under pressure: YES

INSTALLATION REQUIREMENTS
- Dielectric bushings: NO
- Check soil for anode compatibility: Not Applicable
- Anode installation: Not Applicable
- Remove plastic covering: Not Applicable
- Verify connection after placing tank: Not Applicable
- Connect wire to test station: Not Applicable
- Continuity testing to all piping/equipment: Not Applicable
- Install grade manhole for test station: Not Applicable
- Electrically isolate anchoring straps: NO
- Verify operation of cathodic protection system: NO
- Test cathodic protection & maintain records: NO
- Complete installation checklist to validate warranty: YES

Installation specifications
Fiberglass and steel tanks require pretty much the same basic good sense installation practices. The primary difference in installing a steel versus a fiberglass tank comes in ensuring that a steel tank is electrically isolated and that the cathodic protection system is operational. This requires the use of dielectric bushings at tank and line connecting points. It also requires that the steel tank contractor knows something about soil resistance factors and corrosion potentials. In the short term, steel tanks are more forgiving of an improper installation. Longer term, even a cathodically protected steel tank improperly installed will be susceptible to premature failure. Protecting your tank warranty can be accomplished by carefully selecting an installation contractor. Look for a more involved posture from local codes administration groups, fire marshals, tank (above and below ground) regulatory agencies and trade associations.

Write in 505 for more information

PEMCO
SOIL REMEDIATION DIVISION

A PEECO COMPANY

"WE OWN AND OPERATE SOIL REMEDIATION PLANTS"

- **200,000+ TONS ANNUAL CAPACITY**
- **MOBILE AND STATIONARY CAPABILITY**
- **LICENSED - BONDED - INSURED**
- **EPA/LOCAL REGULATORY COMPLIANCE**
- **EXPERIENCED, OSHA TRAINED CREWS**

PLEASE SEND INFORMATION ON PEMCO’S SOIL REMEDIATION PROGRAM, TO:
ATTENTION: COMPANY ___________________________ ADDRESS: ___________________________
TELEPHONE ___________________________ CITY/STATE/ZIP: ___________________________

PEMCO 437 N Columbia Blvd - P.O. Box 11569 Portland, OR 97211 PH(503)283-2151 Fax(503)283-6388

Write in 159

January-February 1992 Soils 27
These days, the environment is no longer a hidden issue. Which is why O/C TANKS make more sense than ever.

And in environmentally sensitive areas why our double-walled Fiberglass* tanks are the best choice yet.

Fiberglass* tanks: rust-proof and rust-proof proven

When steel tanks rust — inside or out — they can leak. Fiberglass* tanks never rust. So they never leak from corrosion. And O/C TANKS have proven that \textit{in use}. In fact, we’re now the world’s most experienced manufacturer of underground tanks with over 185,000 installed nationwide.

Protecting our precious underground water supplies

No one wants polluted drinking water. Or polluted well water. Or farms with tainted irrigation systems. That’s why the American Petroleum Institute guidelines recommend secondary containment for underground tanks when potable water wells or sole-source aquifers are within 300 feet of the tank. In environmentally sensitive areas, our double-walled HydroGuardTM System is the perfect solution.

The system is activated at our factory and goes right to work. HydroGuardTM checks the tank’s condition during transportation...
and through installation. After that, the system operates continuously underground. And that's not all.

The Leak Detection System that's unique to HydroGuard™

HydroGuard™ provides 360 degree secondary containment 24 hours a day for the life of the tank. Its built-in leak monitor is actually sensitive enough to detect leaks as tiny as 0.10 gallons per hour, not coincidentally the EPA standard for precision-testing. And if that's not enough reassurance, HydroGuard™ comes with a 30-year structural and corrosion warranty.

If you're looking for a new tank that will protect the environment from pollution and your business from liability risks, choose the HydroGuard™ System. Don't bury a mistake.
Clearing your headspace

Pack up your samples in a plastic freezer bag

By Jack Murphy

Lab In A Bag is a portable field screening device that provides field interface between contaminated samples and a vapor analyzer for rapid and cost-effective estimates of contamination. Both site assessment and remediation activities involve chemical analysis of contaminants. These analyses may be conducted in situ, on site or in the laboratory.

Laboratory measurements are generally accepted as the most reliable estimates of contaminants. However, the sample may deteriorate between the time of collection and the time of analysis due to volatilization, adsorption or biological transformation so that laboratory results may not accurately reflect the character of the sample as collected at the site.

In situ measurements offer the least disturbance of the material being analyzed but also afford the least control of analyzing conditions. Few truly in situ analytical methods are currently available and generally accepted, particularly for contamination by organic substances. Numerical data from in situ measurements suffers from lack of control of conditions so that only semiquantitative results are available. In situ methods can be useful to determine whether further action or analysis is required.

In on site analysis, a sample is taken and immediately analyzed with a portable measuring device at the site. Because the sample is measured on the spot, sample deterioration is minimized. And, because the sample is in hand, analytical conditions can be more carefully controlled. Lab In A Bag, developed by In-Situ, Inc., of Laramie, Wyo., in cooperation with the EPA (Environmental Protection...
Agency) is an on site analytical tool. It was commercialized under the authority of the Federal Technology Transfer Act of 1986 using research sponsored by the Las Vegas Laboratory of the EPA and the Office of Underground Storage Tanks.

Lab In A Bag actually uses one-quart size zipper closure food storage bags to measure volatile organic compounds (VOCs).

The principle is that the bags constitute a sealed container which provides a "headspace" over the sample. Several versions of the headspace method have been used, but in each, some kind of equilibrium distribution of VOCs between sample and headspace is approached during an equilibrium period. The equilibrium may be hastened by agitation or developed slowly. Soil samples may be allowed to equilibrate directly or water may be added to disaggregate the soil and facilitate displacement of VOCs.

The headspace is then drawn off and analyzed with a total organic vapor detector (TOVD), a device which responds to numerous compounds and gives a single readout characteristic of the mixture as a whole. No product discrimination or molecular identification is attainable with TOVDs.

The headspace may be created in a rigid container or in a flexible bag. Rigid containers can cause problems when the headspace is sampled by the TOVD—if the rigid container is sealed, a back pressure is generated which retards flow to the TOVD and can alter the readout. If the container is open to the atmosphere, ambient air may intermingle with the sample headspace, diluting the sample. To overcome these problems of the rigid container, the headspace can be developed in a sealed, collapsible bag.

The headspace method must provide reproducible sample size and headspace volume, constant headspace pressure during sampling by TOVD and sealed integrity from outside influence—during both equilibration time and TOVD sampling time. Use of the polyethylene bags meets all these requirements.

Researchers worked with one-quart zipper closure bags to measure headspace volatiles and obtained satisfactory results for benzene, gasoline and chlorinated hydrocarbons in water and soil samples. G.A.

"Standardized measurements are necessary to determine whether significant contamination is present during a site assessment or remediation..."

The new choice for Soil Remediation

MOBILE RECLAIM, INC.

For further information please call or write:
Mobile Reclaim, Inc., 4131 NW 13th St., Suite 105, Gainesville, FL 32609 (904) 373-4614, Fax (904) 373-4628

*25 Tons/hr * Gasoline, Diesel Fuel, Aviation Fuel, Kerosene * 2 hr Set Up *

Write in 085

January-February 1992 Soils 31
Are you paying too much for Environmental Services?

Take this test and see ...

1. Does your environmental firm routinely perform soil borings prior to tank removals?
2. Are you regularly hauling over 100 cubic yards of contaminated soils to landfills?
3. Are lab costs exceeding 20% of your total bill?
4. Are you given lump sum billing statements without itemized break-downs of project component costs?
5. Are you paying for PID screening of soils on projects involving heavy petroleum products?

If you answered "yes" to any of the above questions, you're probably paying too much or paying for unnecessary work at your site. The environmental aspects of UST compliance don't need to cost you a bundle.

At EnviroQuest we understand a tank owner's business needs. Fee building is not a way of life for us. We have saved our clients millions of dollars with our common sense approach, based on a foundation of information assembly and options assessment long before initiation of any corrective procedures. Our goal is to get you into compliance effortlessly and back into business fast. We give you options, not mandates.

EnviroQuest Technologies is a group of UST professionals who are experts in risk management and cost-containment. With EnviroQuest on your team, you know your costs in advance and why. Using our proprietary software tool, EnviroTank™, we will effectively cut your annual environmental services bills in half.

If your routine projects are turning into costly headaches, call:

EnviroQuest
Technologies
Limited

903 Lydia • Kansas City, Missouri • 64106
(816) 478-0385
800-821-2263

Robbins, R.D. Bristol and V.D. Roe published results of their research in *Ground Water Monitoring Review*, vol. 9, no. 4 in the fall of 1989. They compared field data to laboratory measurements and obtained excellent correlations.

Headspace methods yield relative semiquantitative values directly and can also be standardized by comparison to prepared standards. Relative measurements give numerical values on a relative scale, permitting comparison of relative values of contaminant levels between samples. This kind of quantification would be useful, for example, to plot contours of contamination at a given site to help locate contaminant sources or migration pathways. For relative measurements, no standard samples are run through the headspace method for calibration.

Standardized measurements require that the headspace procedure be calibrated in some way against accepted standards. After calibrating the TOVD to a particular standard gas such as methane or isobutylene, the TOVD response is recorded for a series of aqueous solutions of appropriate volatile liquid standards run through the headspace method. The values measured for the samples are then reported in the units appropriate for the volatile liquid standards. Standardized measurements are necessary to determine whether significant contamination is present during a site assessment or remediation—and when reporting...
levels to a client or regulatory agency.

A variety of standards and corresponding units may be used. For example, one may report the amount of gasoline related constituents in water samples as:

- ppm (parts per million) benzene or hexane (etc.) equivalent, because the bag was calibrated with benzene or hexane (etc.)
- ppm of fresh unleaded 85-octane winter-gasoline equivalent—because that standard was used to calibrate the method.

While it is best to choose as standards substances that are identical or similar to field samples, it may be that no standard is really similar to the environmental product measured. Even so, the TOVD response can be reported as equivalent to the response obtained by a certain level of the chosen standard and treated the same way as an environmental sample. This is a standardized measurement.

It is possible to create a bag sampling system with a collection of loose parts. But for optimum reproducibility and to minimize accidental fouling of the TOVD, In-Situ’s Lab In A Bag provides:

- a sturdy base to secure the bag
- a battery-operated pump to inflate the bag in-line, with a pressure switch to shut off the pump automatically at full bag inflation
- a battery-operated magnetic stirrer for sample agitation during the equilibration period
- a timer with audible and visual alarm for automatic cut-off to indicate the end of the equilibration period
- valves to direct flow of air to bag and to connect bag to TOVD for headspace measurement
- rechargeable battery to provide full operation of instrument functions for a full field day
- auxiliary equipment kit for measuring water and soil samples and for preparation of standards.

The focus of Lab In A Bag is the bag. A hole is cut in the wall of the bag so it can be attached to the instrument and sealed against air loss or infiltration. The valves are used to isolate the bag from the TOVD and connect the bag to the pump. The sample and a stir bar are inserted through the zipper opening and sealed in.

The pump introduces ambient air into the bag until the internal pressure reaches the small value of six inches of water (0.22 psi or 0.015 atm) and opens a pressure sensitive switch which shuts off the pump.

The stirrer agitates the sample for a predetermined time (one to 11 minutes) to effect equilibration of volatiles between the sample solution and the headspace. At the end of the set time, the stirrer stops automatically and alarms prompt the operator to turn a valve connecting the bag to the TOVD for headspace measurement. After the TOVD is disconnected, the pump purges the tubing before a new sample is introduced.

Again, the bags are the one-quart size, zipper closure bags which can be inflated to a capacity of 1.36 liters, which provides adequate headspace volume for most TOVDs to complete a measurement before depleting the headspace.

It is important to understand that bag inflation is not like the inflation of a balloon. In a balloon, most volume increase results from stretching the balloon wall—increasing the pressure in the balloon as the volume increases. In bag inflation, volume increase simply involves opening the bag without wall expansion. The small amount of pressure required to activate the switch (0.015 atm) involves only 1.5 percent of the total volume of the inflated bag. As a result, day-to-day changes in ambient pressure and temperature have little effect on total volume.

On site analysis can often provide the most useful method when fast results are important.

Write in 506 for more information
Simplified method cuts sampling costs

Single-stage extraction represents small margin of error

By Donald S. Lavery and Edmund C. Manke, Jr.

How fast is fast enough to analyze soil samples that may be contaminated with petroleum hydrocarbons? Investigators can’t get answers and information about a site too soon. Immediate availability of data is only possible when the analysis can be done in the field as samples are taken. What is the quickest way to get results? Current procedures aren’t fast enough.

Modification of laboratory methods either to provide faster analysis or to accommodate the non-laboratory environment—or both—is necessary. The “standard” method to analyze total petroleum hydrocarbons (TPH) in soil is commonly Environmental Protection Agency (EPA) Method 418.1. In fact, EPA 418.1 (Petroleum Hydrocarbons, Total Recoverable, Spectrophotometric, Infrared) is a water analysis method that is usually modified for soil analysis by using a Soxhlet extraction followed by the sample cleanup and infrared analysis.

It is possible to use a method that minimizes sample handling, can significantly reduce Freon usage and extends the infrared method to obtain more information about the sample than is provided by any method that uses single wavelength infrared detection.

This simplified method uses disposable components to do a single-stage Freon-113 extraction, a solid-phase extraction for sample cleanup and either a single, referenced infrared absorbance or dual referenced infrared absorbance measurement for detection.

A single-stage extraction saves time and minimizes Freon usage. By comparison, a classical extraction method attempts to remove all the analyte from a sample matrix, quantitatively dilute the extract and measure the concentration of the final solution. Typically, the original sample is extracted at least three times (or, in the case of a Soxhlet extraction, many times). At each stage of the extraction, the analyte is distributed between the original sample and the extraction solvent. After separation of sample and extract, analyte remains in the sample matrix, both bound due to the partition between phases and dissolved in the residual solvent that is not completely removed in the separation step. A single-stage extraction with a measured volume of solvent will not recover the analyte remaining in the sample due to partition, but it does correctly measure the concentration of the extract in equilibrium with the sample so the dissolved analyte left behind does not represent a loss. The single-stage extraction thus fails to recover only that fraction of the analyte left in the soil due to the partition and, provided the partition strongly favors the solvent phase, as would be reasonably expected in the case of Freon-113 and soil, this should represent a small error.

Since sampling variability and sample degradation during

Dr. Donald S. Lavery is laboratory director and Edmund C. Manke, Jr., is applications chemist for General Analysis Corp. of South Norwalk, Conn.

Simplified method uses disposable components to perform a single-stage Freon-113 extraction and infrared absorbance measurement for detection.
transportation and storage tend to dominate the variation in environmental analyses, the sample partition loss of a single-stage extraction should be unimportant. Significant variation in results is by no means restricted to TPH analyses. For example, Paul R. Locinto (in LC-GC, 1991) cites acceptable recovery ranges for 11 priority pollutants from soil of which 26-90 percent (phenol), 38-107 percent (trichlorobenzene) and 35-142 percent (pyrene) are typical. Viewed in this light, measured recoveries by the simplified method are quite good. In addition, the improvement in sampling strategy and the avoidance of sample loss provided by analyzing immediately may well yield a better overall result than conventional sampling with delayed laboratory analysis.

There are two approaches to the infrared detection part of the method. The simpler system is an infrared filter photometer using an interference filter centered at 3.4µm—the wavelength normally used for this analysis. However, a simultaneous measurement is also made at a reference wavelength (2.5µm) where hydrocarbons are transparent. The measurement at the primary wavelength is continuously ratioed to the reference measurement.

The second detection method uses two measurement wavelengths, each of which is continuously referenced to the 2.5µm reading. The two-wavelength system measures both the conventional 3.4µm absorbance due to aliphatic hydrocarbons and also the absorbance at 3.3µm which is characteristic of aromatics.

These two classes of hydrocarbons absorb both in different regions of the infrared spectrum and with very different intensities. The single (3.4µm) measurement is, for all practical purposes, insensitive to aromatic compounds and relies on the calibration standard to have about the same aromatic content as the sample. The two-wavelength approach separately measures and scales the absorption characteristics of the two classes of petroleum hydrocarbons which gives a better measure of the

*Continues on page 36→

Figure 2: TPH Analyzer Response to Weathered Diesel Fuel and Weathered Gasoline.

Site Contamination: A Case Of RELIABILITY VS. LIABILITY

With current laws concerning responsibility for the cleanup of site contamination, having reliable information can make a critical difference in helping you reach sound environmental decisions, and protect you from potential liability.

When site contamination from stored fuels or other chemicals is discovered, Sybron bioremediation programs use ABR® cultures containing selectively adapted, naturally occurring microbes to attack and biodegrade contaminants with consistent and permanent results. Sybron bioremediation doesn’t involve containerization or landfilled materials which can escape into the environment, so the risk of contingent liability is eliminated.

YOU CAN RELY ON SYBRON FOR:
- In-Depth Site Assessments
- Lab and Full-Scale Treatability Studies
- Ultimate Site Decontamination
- Cost-Effective Cleanup
- Minimal Site Disruption

Our turn-key service means you work solely with us from initial site survey and lab analysis to the implementation of a complete bioremediation program and filing for closure.

Choose reliability vs. liability. Call today for information.
800-678-0020 or 609-893-1100

SOLVING A WORLD OF PROBLEMS THROUGH BIOTECHNOLOGY

Sybron Biochemical
Birmingham Road, Birmingham, NJ 08011

Write in 162 January-February 1992 Soils 35
Simplified method, from page 35

overall contamination picture.

In many cases, the apparent defect in the single wavelength method is not as serious as it might appear. Many, perhaps the majority, of petroleum contaminated sites involve a fuel. Compared with the other uncertainties in environmental sampling and analysis, the variation in aromatic content of petroleum fuels is not large (say, 0 to 40 percent). A method intended to define the extent and overall level of contamination of the site will not be too far off the mark if it assumes an undetected aromatic content of 35 percent. This is just what the synthetic oil standards specified in EPA standards do. On the other hand, a more complex site could involve multiple sources and non-fuel products so the aromatic content of samples might vary from 1 to 100 percent. In these cases, direct detection of aromatics would provide invaluable information. An infrared analyzer that uses a reference wavelength has photometric advantages. The reference cancels short term source and electronic fluctuations (noise) as well as longer term source and optical component changes (drift). However, there may be a special advantage for TPH analysis. N. Thomey reported positive interferences with infrared TPH analyses in clay and limestone samples. It seems likely that this is due to fine particulates that cause broad-band scattering. A single wavelength analyzer cannot distinguish scattering from a hydrocarbon absorption. But a multiple wavelength system would be similarly affected at all wavelengths so the effect would, to a large extent, cancel.

The equipment required for the simplified extraction method is shown in the photograph on page 34 and includes:

- solvent dispenser capable of precisely dispensing 20 ml of Freon-113
- battery-powered top loading scale
- 40 ml EPA VOC sample vials, caps and septa
- spatula
- disposable sample reservoirs with integral filter frit
- clean-up cartridges
- pressure seal assembly and 20 ml gas-tight syringe
- infrasil cuvettes, one cm
- infrared filter photometer
- Freon-113 spectrophotometric grade or better
- silica gel 60-200 mesh, chromatographic grade
- appropriate calibration standards

Figure 3: EVAPORATION LOSS FROM PETROLEUM PRODUCTS AFTER 24-HOUR EXPOSURE

<table>
<thead>
<tr>
<th></th>
<th>INITIAL (g)</th>
<th>FINAL (g)</th>
<th>% LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>34.50</td>
<td>4.97</td>
<td>85.6%</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>40.37</td>
<td>39.20</td>
<td>2.9%</td>
</tr>
<tr>
<td>Kerosene</td>
<td>31.09</td>
<td>28.47</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Introducing the latest advancement in double wall tank protection.

First with double wall tanks. First with factory-filled brine monitoring. And now Xerxes is first with TRU-CHEK™—a continuous leak detection system with a precise and economical testing procedure that exceeds all EPA criteria.

You get true double wall protection, the non-corrosive durability of fiberglass, and compatibility with all fuels—including alcohol blends. TRU-CHEK™ is just another way Xerxes gives you more built-in value.

For more information on TRU-CHEK™ and the entire line of Xerxes single wall, double wall and multi-compartment fiberglass tanks, call 612-887-1890. Or see your nearby Xerxes representative, today.

XERXES® CORPORATION
7901 Xerxes Avenue South, Minneapolis, MN 55431-1288

Write in 174

36 January-February 1992 Soils
Prior to analysis the analyzer was calibrated by preparation of standards in a concentration range of 1-500 mg/L (milligrams per liter). Five standards were prepared at 100 mg/L increments using hexadecane and benzene. The aliphatic channel was calibrated with hexadecane (C16) and the aromatic channel was calibrated with benzene. Each channel of the dual channel analyzer was "linearized" via a built-in adjustable linearizing circuit to compensate for any non-linearity within the calibration range. In addition, the response of each channel was corrected for interference from absorption on the opposing channel by a matrix circuit built into the analyzer to provide more accurate discrimination of the true aliphatic and aromatic contribution of the samples. Results are reported as hexadecane or benzene equivalents. Figure 2 (page 35) shows the response of an analyzer calibrated with benzene and hexadecane to evaporated (weathered) gasoline and diesel fuel.

Calibration can also be done using actual samples (gasoline, diesel, jet fuel, kerosene) or synthetic reference oil standards. Standards may be chosen based on the type of contamination found on a given site, but care must be taken to prepare a standard which emulates the characteristics of the condition of the site. For instance, for an older site known to be contaminated with gasoline, a gasoline standard may not be appropriate since weathering and biodegradation may have significantly altered the chemical composition of the contaminating gasoline. Figure 3 (page 36) shows the effect of evaporation of gasoline, diesel fuel and kerosene in just 24 hours. For older sites, a standard reference oil may be more suitable than a fresh sample of the original contaminant.

Method 418.1 calls for use of a reference oil prepared with 37.5 percent hexadecane, 37.5 percent isooctane and 25 percent chlorobenzene by weight. The use of chlorobenzene as an aromatic standard seems a poor choice since the weight contributed by the chlorine is significant but contributes nothing to the aromatic absorbance. The result is a disproportionate reduction in the aromatic contribution to the standard. In addition, the chlorobenzene absorption is both unusually weak and significantly displaced in wavelength from the bands that are characteristic of the aromatic compounds actually found in petroleum. (See Figure 4, above).

The analysis method is as follows:
1) Weigh about 20 grams of soil into a 40 ml VOC vial and record the weight to the nearest 0.1 gram.
2) Add 60-200 mesh chromatographic grade silica gel (up to 5 grams) to the sample, after shaking, is dry and free-flowing.
3) Dispense precisely 20 ml of Freon-113 into the vial and cap it. If necessary, wipe the top edge of the vial and the septum clean in order to allow a leak-tight seal.
4) Shake the sample vigorously for five minutes, let stand one minute and decant the liquid into a sample reservoir (with filter cartridge attached) leaving as much of the soil as possible in the extraction vial.

Continues on page 38→
5) Close the sample reservoir with the pressure seal, attach the pressurizing syringe and pressurize the reservoir so the extract is forced through the filter cartridge dropwise into a one cm quartz cuvette.
6) Discard the first 0.5 to one ml (1/6 to 1/3 of the cuvette volume) and collect the next 2.5 to 3 ml.
7) Fill a cuvette by processing Freon from the same batch as that used for the extraction through a cleanup cartridge. Place it in the sample holder of the infrared analyzer and set the zero control(s) so the display(s) read zero.
8) Place the sample cuvette in the analyzer and read the extract concentration in mg/L.
9) Calculate the soil TPH concentration in ppm (parts per million) according to:

\[
\text{soil concentration} = \frac{\text{solvent volume} \times \text{extract concentration}}{\text{sample weight}}
\]

The sample cleanup technique was tested by processing standard solutions of partly evaporated gasoline and diesel fuel through the cleanup step. The results are shown in Figure 5, above. Clearly, the cleanup leaves the petroleum components virtually

Figure 5: RESPONSE OF STANDARD SOLUTIONS PROCESSED THROUGH SAMPLE TREATMENT CARTRIDGE

<table>
<thead>
<tr>
<th>CONCENTRATION (mg/L)</th>
<th>AROMATIC RESPONSE</th>
<th>ALIPHATIC RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXPECTED MEASURED</td>
<td>EXPECTED MEASURED</td>
</tr>
<tr>
<td></td>
<td>MEAN ō</td>
<td>MEAN ō</td>
</tr>
<tr>
<td>GASOLINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.4</td>
<td>27 17 1</td>
<td>52 51 2</td>
</tr>
<tr>
<td>200.8</td>
<td>54 46 1</td>
<td>104 100 1</td>
</tr>
<tr>
<td>301.2</td>
<td>80 72 2</td>
<td>156 156 2</td>
</tr>
<tr>
<td>401.6</td>
<td>107 94 1</td>
<td>208 208 2</td>
</tr>
<tr>
<td>502.0</td>
<td>134 120 0</td>
<td>260 271 4</td>
</tr>
<tr>
<td>DIESEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.0</td>
<td>7 3 3</td>
<td>80 72 1</td>
</tr>
<tr>
<td>210.0</td>
<td>14 6 4</td>
<td>161 151 2</td>
</tr>
<tr>
<td>315.0</td>
<td>21 8 1</td>
<td>241 239 1</td>
</tr>
<tr>
<td>420.0</td>
<td>28 17 1</td>
<td>322 332 1</td>
</tr>
<tr>
<td>525.0</td>
<td>35 31 1</td>
<td>402 422 1</td>
</tr>
</tbody>
</table>

SOIL PROCESSING USED AND NEW EQUIPMENT

We offer the nation's largest selection of soil processing equipment...new, used, rebuilt, standard or custom designed. Call us for immediate quotes on parts, major components or complete systems.

CALL TOLL FREE 1-800-826-0223

(Outside the U.S. And in Kentucky call 1-502-245-1977)
FIGURE 6: Effect on Standard Solutions of Silica Gel Used to Dry Soil Samples

<table>
<thead>
<tr>
<th>SILICA GEL ADDED</th>
<th>0g</th>
<th>1g</th>
<th>3g</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CONCENTRATION (mg/L)</td>
<td>MEASURED CONCENTRATIONS (mg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.7</td>
<td>123</td>
<td>125</td>
<td>108</td>
</tr>
<tr>
<td>296.8</td>
<td>313</td>
<td>299</td>
<td>295</td>
</tr>
<tr>
<td>474.9</td>
<td>475</td>
<td>464</td>
<td>457</td>
</tr>
<tr>
<td>Hexadecane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.5</td>
<td>118</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>298.8</td>
<td>297</td>
<td>308</td>
<td>316</td>
</tr>
<tr>
<td>478.1</td>
<td>467</td>
<td>474</td>
<td>494</td>
</tr>
</tbody>
</table>

unchanged. By comparison, vegetable oil in a similar solution was 95 percent retained by the cartridge. Figure 6, above, shows that the silica gel used to dry samples has very little effect on standard solutions.

The performance of the simplified method was examined by testing the recoveries obtained from two different soil types, sandy clay and high humus topsoil. Test samples were made up in the lab by obtaining clean samples of both types and contaminating them with known concentrations of petroleum products. Diesel fuel, unleaded regular gasoline and kerosene were all evaluated. All petroleum samples used as standards were evaporated by placing 35 to 40 grams of each in a beaker and allowing it to evaporate for 24 hours. Those losses were outlined in Figure 3 on page 36. The evaporated samples were used to prepare stock solutions which were diluted to prepare standards at the desired concentration levels. Each standard was run through the extraction system, measured on the two channel photometer to determine aromatic and aliphatic response. Those results were shown in Figure 5. Soil samples were prepared by dissolving each sample type in Freon-113 and mixing the solutions with soil. After shaking, the Freon-113 was allowed to evaporate. The soils were extracted using the outlined method and the recoveries calculated.

Many factors affect the recovery of hydrocarbons from soil, including soil type, porosity, moisture, pH and particle packing. This experiment examined the effect of water on the recovery of diesel fuel from the sandy clay and the high humus topsoil. Wet samples were prepared in duplicate by adding water to 20 grams of dry soil. The volume of water added was from 0 to 5 ml. Five ml of water was sufficient to produce some standing water in the sample vials. Reference samples at each water increment were extracted with Freon-113 following the described method. Attempts were made to dry samples using both sodium sulfate and silica gel. Silica gel proved to be more effective. The results for untreated samples were compared with those for samples which were treated with sufficient silica gel to cause the sample

"The performance of the simplified method was examined by testing the recoveries obtained from two different soil types, sandy clay and high humus topsoil."

CONTAMINATED SOIL

- Thermal treatment
- Asphalt encapsulation

Here’s How It’s Being Done

Hour-long video explores these two remedial technologies... the answers and the problems.

Produced by Video University in cooperation with Soils magazine.

CALL TOLL FREE
1-800-924-8444
CHARGE TO MASTERCARD, VISA, AMERICAN EXPRESS.

$129.00

Continues on page 40→

January-February 1992 Soils 39
to appear dry. The results (Figure 7, left) show significantly greater recoveries for treated samples. Results are reported on a wet basis since this is the only option for field analysis. The amount of silica gel added was varied to facilitate total sample drying, but for the largest amounts of silica gel, very little Freon-113 was available for measurement. It is recommended that for these samples, additional Freon-113 be added and that the additional volume be included in the solvent volume used in the final calculation.

At least two mechanisms appear to affect the extraction. Wet sandy clay samples congregated into large balls when shaken with Freon-113. In these cases, the volume of free solvent was much greater than for dry samples. This suggests that the Freon could not penetrate the wet agglomerates which prevented contact with and extraction of the hydrocarbons. In addition, water in porous soils at levels that do not cause serious agglomeration may still fill the pores and exclude Freon, reducing the contact between the hydrocarbon contaminants and the solvent. This would explain why wet samples that were dried rather quickly with silica gel showed lower recoveries than those with lower initial moisture content.

The simplicity of this extraction method and its success in dealing with very difficult samples promises to allow field analyses to be used much more frequently than they have in the past. This should lead to reduced costs for sampling and remediation programs by providing immediate information to equipment operators—allowing sampling plans to be optimized and reducing Freon-113 usage.

References:

D. DeAngelis, Manual of Sampling and Analytical Methods for Petroleum Hydrocarbons in Groundwater and Soil, American Petroleum Institute, Publication No. 4449.

Write in 507 for more information
Austin has piping solutions

Austin Engineering, Rolling Meadows, Ill., says they have the solution to difficulties related to assembling double-walled UST piping systems.

The Flex Protector® IV product was designed to serve as the necessary flexible component in rigid secondary containment systems for piping, Bill Babbin, president says.

The FP4 has a heavy wall and is reinforced to prevent pinching at sharp bends. Sealing is assured by a built-in heat activated adhesive, heat-shrink cuffs and clamps.

Write in 513 on inquiry card.

Separator processes waste water containing petroleum

The Hotsy Corp., Englewood, Colo., introduces an oil water separator to process waste water contaminated with petroleum, vegetable oils, greases, animal fats and oils before they go down the drain.

The separator, which works 24 hours a day, is self-contained, fully automatic and removes oil in a single stage process, the manufacturer says. Hotsy offers six models that range from 132 gallons per hour to 2,640 gallons per hour.

The separator requires minimal maintenance to guarantee 15 ppm water discharge to comply with local or EPA regulations. And, there are no expensive filters or coalescers to replace regularly, according to the manufacturer.

Write in 514 on inquiry card.

Soil Reclamation—safe and economical

with Midland Portable Cold Mix Plant

FAST ON THE JOB...

- Contaminated Soils
- Cold Mix Asphalt
- Cold Recycling
- Blend 2 Aggregates
- Soil Stabilization
 Featuring
 - All Hydrostatic Drives
 - Rugged Tubular Frame
 - 200-700 Tons Per Hour

FAST TO THE JOB...

Making both large jobs and small jobs more profitable!

Call Today 1-800-2 GET-MMC
(800)243-8662

"The most portable pugmill available anywhere,"

MIDLAND MACHINERY CO., INC.
101 Cranbrook Ext., Tonawanda, NY, USA 14150

Write in 081
The most important Environmental decision you make is what to do with your Equipment.
Remove, Retrofit, Replace, Upgrade are UST decisions that will determine your environmental future.

Carter Equipment Co. can simplify your choices and advise you in the most critical aspect of environmental compliance—Equipment! With over 50 years of expertise in liquid handling systems, Carter can put you on track with state-of-the-art solutions. Our equipment experts can assess the viability of your removal, retrofit, and upgrade plans—giving you a look ahead to potential problems in your overall strategy.

Whether your needs are Regional or National, Carter Equipment Co. has the resources to handle them.

Call 1-800-821-2263 for a Confidential Consultation.

What’s New

Thermotech plans seminar on thermal processes
Thermotech Systems Corp., Orlando, Fla., announces their biannual seminar on soil remediation focusing on thermal processes, technical operations, regulations, testing and asphalt plant conversions.

Business considerations, including current industry status, market interest for portable and stationary plants, economics, competitive pressures and legal issues will also be covered.

Dates of the meeting are January 29-31, 1992 in Orlando at the Sheraton Orlando North. Fee for the seminar is $450 per attendee. The cost includes meals and refreshments. Call Rick Graddy, 407-290-6000 for more information.

State-by-state summary correction
The listing for the state of Indiana is:

<table>
<thead>
<tr>
<th>Product</th>
<th>Parameter</th>
<th>Lab test</th>
<th>Detection</th>
<th>Notification</th>
<th>Action</th>
<th>Recom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>TPH</td>
<td>GC/FTD</td>
<td>modified 8015</td>
<td>GCMS 8240</td>
<td>20ppm</td>
<td>>20ppm</td>
</tr>
<tr>
<td>Kerosene</td>
<td></td>
<td></td>
<td>modified 8015</td>
<td>GCMS 8240</td>
<td></td>
<td>Site specific</td>
</tr>
<tr>
<td>Naptha</td>
<td>Diesel</td>
<td>TPH</td>
<td>GC/FTD</td>
<td>modified 8015</td>
<td>GCMS 8270</td>
<td>20ppm</td>
</tr>
<tr>
<td>Waste</td>
<td>Oil</td>
<td>TPH</td>
<td>GC/FTD</td>
<td>modified 8015</td>
<td>IR 418.1</td>
<td>20ppm</td>
</tr>
</tbody>
</table>

Source: Lynette Fogel, Department of Environmental Management, 317-240-6217

SPECIAL CALL FOR PAPERS
for an Association of American Railroads sponsored session on DIESEL CONTAMINATED SOILS

DEADLINE FOR SUBMISSION IS APRIL 1, 1992.

at the Seventh Annual Conference on HYDROCARBON CONTAMINATED SOILS ANALYSIS, FATE, ENVIRONMENTAL & PUBLIC HEALTH EFFECTS, AND REMEDIATION University of Massachusetts at Amherst September 21-24, 1992

This session is designed for the railroad industry and will serve as a platform for research on diesel remediation technologies. The presentations will be produced as a special publication.

For a paper to be considered, please submit a ONE-PAGE ABSTRACT containing: presentation title; 300 word narrative; and for each author, name, degree, title, affiliation and complete address and phone number.

FOR FURTHER INFORMATION and abstract submission please contact:
Paul T. Kostecki, Ph.D.
Environmental Health & Sciences
N344 Morrill
University of Massachusetts
Amherst, MA 01003
Phone: (413)545-2934
FAX: (413)545-4692

Write in 147
Write in 188

42 January-February 1992 Soils
What's New

Insul-Lite Tank

Tank insulates in case of fire
We-Mac Manufacturing Co., North Kansas City, Mo, offers the Insul-Lite, a double wall aboveground tank with a two hour fire rating without the added weight of concrete. Using U.L. listed Thermo-Ceramics, Insul-Lite simultaneously insulates the product tank reducing evaporation and virtually eliminating condensation in the interior, the manufacturer says. Insul-Lite double wall tank systems come with overfill protection and spill containment.

Write in 515 on inquiry card.

Brass Soil Tubes

I-Chem offers sampling tubes
I-Chem, Hayward, Calif., introduces ready-to-use Brass Soil Sampling Tubes as part of their new Field Team™ line of products.

The Brass Soil Tubes are six inches long and come with end-caps and labels inside each case. They are packaged to accommodate large or small projects, I-Chem says.

Other features include thick wall construction, tight sealing end-caps and a variety of core diameters. Teflon tape and end-caps are also available.

Write in 516 on inquiry card.

REBUILD
YOUR SOIL REMEDIATION PLANT

As builders of complete soil plants, we have the experience to properly re-engineer and rebuild your present plant to solve your operating problems.

- Drive Conversions
- Tires/Trunnions
- Flying Packages
- Afterburners, Coolers
- Controls
- Replacement Dryers

USED
COMPLETE PLANTS AND COMPONENTS

- Thermal Oxidizers
- Computerized Plant Controls
- Load-in/Load-out Recordation
- Control Operation Rooms
- Baghouses
- Rotary Dryers/Kilns
- Evaporative Coolers
- Soil Feed Bins

CALL US TODAY!
800-833-4383

TARMAC PRODUCTS, INC.
219 N. 7 Hwy. • Blue Springs, MO 64014

Write in 201
January-February 1992 Soils 43
It’s just a phase you’re going through

What services to expect in each phase of risk assessment

By Lyle A. White

Tank owners and environmental consultants need to know their way through the rapidly growing risk assessment maze.

In the process of getting tanks and facilities into compliance with government regulations, it is easy to lose sight of the bigger picture—property value. Tanks and tank facilities are real property and environmental exposure to real property must be considered a top priority.

As tank owners weigh their options to stay put, grow, buy, sell or make any change, aspects of environmental risk assessment must be clearly understood.

Environmental risk assessment is an objective review of a property to determine any actual and/or potential sources of environmental contamination.

Assessment is the immediately necessary first step in appraising property value. It is necessary when real assets are bought and sold, when collateral is reassessed or when there is a change in instrument by the lender. At some point, tank owners become sellers—and it is essential to know what you have because any serious buyer insists on knowing what he or she is getting.

Risk assessment is divided into three distinct phases. Breaking the assessment into phases takes into account the uncertainties, the unknowns and the unseens associated with properties.

Phase one is the identification and discovery process. Phase two is known as the characterization process—investigation to obtain quantitative evidence of the presence of hazardous substances and prescribing corrective action. Phase three is the remediation process—actually solving or containing the problem.

The generally accepted criteria for each phase of an environmental assessment are:

Phase one—Identification and Discovery

- Records and Regulation Review
 - Title search to reveal chain of ownership
 - Federal, state and local regulatory review
 - State hazardous waste lists
 - CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) and FINDS (Facility Index System) hazardous waste permit holders
 - Tank registration status and inventory records

- Site Condition Assessment
 - Land and/or facility use
 - Site topography and drainage
 - Site resources and water wells
 - Evidence of hazardous materials
 - Site geology
 - Site hydrogeology
 - Physical inspection of site, may include limited sampling and analysis

The Phase one report summarizes findings of the evaluation. It should pinpoint potential problems, define client risks and liabilities and recommend corrective action options.

Phase two—Characterization Process

Extensive site investigation should gather quantitative evidence.

- Subsurface investigation
- Geophysical surveys
- Vapor probe surveys
- Groundwater monitoring
- Tank integrity tests

Lyle A. White is vice-president of environmental services for EnviroQuest Technologies of Kansas City, Mo.
The Phase two report delineates the extent of the problem, the risk involved and the cost guidelines for remediation. It also should analyze alternatives and rank them in terms of risk and liability.

Phase three—Remediation/Corrective Action
- Remedial action design
- Remedial action implementation
- On-going monitoring and maintenance

Industry surveys indicate the cost of Phase one assessments range from $2,000 to $15,000. The lower end is for raw land and residential investigations and the high end is for more complex industrial situations. Commercial properties can fall anywhere in between.

Since Phase two may include air, water and soil sampling as well as other specialized tests, the cost can range from $10,000 to $100,000—depending on size and complexity. The average falls between $25,000 and $30,000.

Phase three costs can vary greatly, with many cleanups easily exceeding $100,000 in cost.

Often, buyers and lenders will insist on a Phase one and two assessment as a prerequisite to considering purchase—even when there is no suspicious evidence to indicate the need.

In one case, the owner of a full service gas station located at a high traffic intersection in an older part of town wanted to sell. The owner had done all the homework in terms of the current mandates for underground storage tank compliance. His tanks were tight, had leak detection and corrosion protection. In addition, he kept meticulous product inventory records. Still, the potential buyer and his lender insisted on a risk assessment.

“We want to know what we’re getting. We don’t want to buy a problem,” they said.

“I am in compliance,” protested the owner.

“We know. But there could be other problems you don’t know about.”

So, even though the seller was on the top rung of the regulatory ladder, his exposure to risk was not over. The buyer offered to bring in a firm or he would accept an audit from a reputable firm of the seller’s choice. But no matter how much the seller protested, the serious buyer would not go near the dotted line without an assessment in hand.

Anyone in the position of having to procure a risk assessment needs to know what is included (and what is not) in each phase. The true value of environmental assessment is more closely associated with the service provided than with the costs incurred. One cannot research and comparison shop environmental firms without an understanding of the phases.

Buying or selling, satisfying lender requirements, supporting insurance purchases and complying with regulations—all may well require an environmental risk assessment as a property “fact of life.” And, although each assessment is site specific, following the guidelines to each phase can assure the parties involved that they are getting valuable information. Just remember the golden rule: do your homework and know your phases.
Don’t make waves, from page 7

crude oil dissolves. The water soluble phase tends to contain the small hydrocarbons (pentanes and hexanes), small aromatic hydrocarbons (benzene, toluene, ethylbenzene and the xylenes), as well as the hetero-atom-containing hydrocarbons. Figure 2, (page 6) shows the water soluble portion of a crude oil. The regular pattern of the n-alkanes is no longer present. As expected, the compounds seen are the low boiling alkanes and benzene, C1-benzene (toluene), C2-benzences (ethylbenzene and the xylenes), C3-benzenes and naphthalenes. Hetero-atom hydrocarbons are also present, however the abundance of these compounds and their low concentrations make their identification and detection very difficult. These latter compounds often appear as closely spaced peaks, sometimes forming a broad hump when present at high concentrations.

Even the most advanced gas chromatographic columns cannot separate these complex mixtures into their individual components. Analysis by gas chromatography/mass spectrometry (GC/MS) can lead to confusing data because the ions from several co-eluting compounds are matched for the best fit to a single analyte.

Other petroleum products also show large differences between the whole petroleum product and its water soluble fraction. Figure 3 (page 7) shows a GC trace of a typical 1991 automobile gasoline. The gasoline is comprised of the highly volatile portion of the crude oil. This material is blended with other petroleum intermediates, such as reformate (usually containing high levels of benzene, toluene, ethylbenzene and the xylenes), to make a final, highly sophisticated fuel needed to power cars.

Figure 4 (page 7) shows the water soluble portion of the same gasoline. As expected, the small hydrocarbon compounds and benzenes dominate the GC trace. The relative amount of each compound decreases as their water solubility decreases. Benzene is more water soluble than C1-benzene (toluene) which is more soluble than the C2-benzenes (ethylbenzene and the three xylenes) which are more water soluble than the C3-benzenes and naphthalene.

It is interesting to note that the water soluble portion of crude oil is fairly similar to the water soluble portion of gasoline, even though the starting materials are quite different.

Diesel is prepared from a different portion or cut of crude oil than is gasoline. Figure 5 (above) shows a typical GC trace of diesel fuel #2. The regular pattern of the n-alkanes can be seen in this chromatograph. The compounds present are higher boiling than with gasoline and, as a whole, diesel is less water soluble than gasoline. Figure 6 (above) shows the water soluble portion of the same diesel. As with the crude oil, the dominant n-alkanes are absent from the water soluble portion. The material that is present in the water is dominated by the benzene and toluene peaks, even though very little of these compounds is present in original diesel. Also present are C1, C2 and C3-benzenes, naphthalene, alkylated naphthalenes and some of the phenanthrenes and anthracenes.

What happens in the real world?

Consider what happens to a water sample submitted for a “Total Petroleum Hydrocarbons as Diesel” analysis. The water sample and its container are extracted into an organic solvent. (Quality assurance samples must also be processed.) The solvent extract is then injected into a GC and a GC trace, such as seen in Figure 7, above, is generated. The area under the peaks is calculated and this number is compared to standards and a concentration reported.

The result from this test may satisfy a regulatory requirement, but it may not adequately assess the environmental situation present at the site. The GC trace reveals the presence of the n-alkanes (X). Again, the n-alkanes are insoluble in water and were absent in the chromatogram of the water.
溶于水的石油烃的分布。它们的存在表明这种污染是由于在水中形成的油膜，或者由于吸附到固体材料上的油膜。如果需要测量潜在的外渗迁移，可以通过运动监测地下水，这在一定程度上是正确的。但是，要精确测量水溶性石油烃的量，就需要清除油膜和悬浮的微粒。这可以由合适的实验室取样技术或在实验室中使用适当的化学家完成。

图8所示的是水的第二GC图。不是n-烷烃的常规模式，而是水溶性石油烃的模式。图中有一个宽的峰，顶部有尖峰。实验室可以计算出这个峰的面积，或者他们可以计算出峰顶部的区域。这将使数百种化合物得以分类，其中许多化合物可能包括异原子化合物。它们可能是从燃料的降解而来的，或者是生物材料，可能是从水中摄取的。

如果必须将生物材料与饱和烃的混合物区分开来，则需要进行典型的样品加工步骤，这些步骤可以帮助做出正确的判断。

图8显示了对水的第二GC图。不是n-烷烃的常规模式，而是水溶性石油烃的模式。图中有一个宽的峰，顶部有尖峰。实验室可以计算出这个区域，或者他们可以计算出峰的面积。这将使数百种化合物得以分类，其中许多化合物可能是从水中摄取的。

如果必须将生物材料与饱和烃的混合物区分开来，则需要进行典型的样品加工步骤，这些步骤可以帮助做出正确的判断。
FAX THIS PAGE DIRECTLY TO SOILS MAGAZINE.
WE WANT TO KNOW WHAT YOU THINK.

soils magazine
fax: 816-254-2128

fax-o-gram

To: The Editor
From: __________________________
Title: __________________________
Company: __________________________
City/State: __________________________
Phone: __________________________
Fax: __________________________

RATE THE ARTICLES IN THIS ISSUE

<table>
<thead>
<tr>
<th>1. INTERESTING</th>
<th>4. TOO ELEMENTARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. USEFUL</td>
<td>5. NOT MY AREA</td>
</tr>
<tr>
<td>3. TOO TECHNICAL</td>
<td>6. OTHER/EXPLAIN:</td>
</tr>
</tbody>
</table>

DON'T MAKE WAVES P. 6
WHERE TO DRAW THE LINE P. 8
LOOKING FOR PESTICIDES P. 12
REDUCE SAMPLING ERRORS P. 16
THE OTHER GOOD REASON... P. 20
GIVE TANKS A PROPER BURIAL P. 24
CLEARING YOUR HEADSPACE P. 30
SIMPLIFIED METHOD CUTS COSTS P. 34
JUST A PHASE... P. 44

HERE'S HOW IT WORKS:

- OC HYDRO-GUARD, P. 49
- ART'S SOIL GAS PROBE, P. 50
- HROBETZ HOT AIR PROCESS, P. 52

COMMENTS:

SOUND OFF! COMMENTS, COMPLAINTS, COMPLIMENTS, CRITICISMS, ARTICLE IDEAS, SUGGESTIONS, FEEDBACK, WHAT YOU LIKE, WHAT YOU DISLIKE, WOULD LIKE MORE...? LESS...?
The O/C Tanks Hydroguard™ system was engineered to combine secondary containment with rustproof construction, built-in leak monitoring and precision testing capability, says the company. Secondary containment is provided by rigid double walls. Fiberglass material is inherently rustproof. Leak protection is accomplished by salt water—factory installed between the double walls. A sensor monitors the liquid level in the reservoir, which is surface-mounted to the tank top. The salt water, under hydrostatic pressure, has a stable level if both the inner and outer tank are tight. If an inner wall breach occurs, monitor fluid drains into the primary tank, causing the reservoir to drain. If an outer wall breach occurs, monitor fluid drains into the soil causing the reservoir to drain. If the groundwater table rises over the tank top, the reservoir will overfill with groundwater and activate the high level alarm on the sensor. An optional sensor will activate an alarm if the reservoir drains or overfills. A turbine enclosure limits ingress of water, protects the submersible pump from corrosive soil conditions and allows access to the pump. An electronically monitored collar provides secondary containment of possible piping leaks. It can detect the accumulation of leaked product. The systems are available in nominal capacities ranging from 600 to 20,000 gallons. Tanks have three or four 4-inch fittings (depending on tank size) to accommodate large capacity overspill containers or separate fill and vapor recovery systems. A fitting near the center of the tank can accommodate electronic inventory gauges. Four flow channels run the length of the tank to assure free flow of liquid between surfaces of both shell walls and end caps. The system has been independently tested and statistically validated to meet EPA and National Fire Protection Association criteria as a precision tank test. Write in 509 for more information.
AMS says their new gas vapor probe permits rapid testing, without interruption to service, for early detection of small quantity leakage around underground storage tanks. 4130 chrome molybdenum or stainless steel drive extensions are used to place the vapor probe tip, then removed to leave the probe imbedded at the desired location and sampling depth. A Teflon vapor tube runs from the tip to the surface. The outside diameter of the tip is larger than the diameter of the drive tubes to allow for insertion of the probe and so the drive extensions can be removed by hand in most applications. Optional mesh SST screen is available for the dedicated tips. A retrieval jack is available to assist in the removal of the extensions if needed. The vapor inlet holes are recessed in the tip. Just above the vapor inlet holes is a machined flange. This design creates a dead air space, says the company. A Teflon umbrella can be attached to the probe just above the flange. The umbrella is folded and inserted into the drive extension along with the tip. After the tip has been inserted to the desired depth, the removal of the drive extensions causes the Teflon umbrella to unfold. This prevents any dirt from falling in and around the vapor tip and prevents plugging of the vapor inlet holes. The Teflon tube is attached to the tip by pushing the tube over a barbed tang so the tubing cannot be pulled off. The Teflon vapor tube is threaded through the drive extensions and into the drive head. The drive head is attached to the up-and-down hammer attachment or a rotary hammer drill. The company says the tip can be used not only in soils, but also for liquid sampling in high water table areas.

Write in 510 for more information
disposal facilities must do in order to protect their long-term liability and viability.

Practical guidelines for field work
Whereas soil samples are often collected from the bottom of an excavation to determine whether all the contamination has been removed, waste disposal firms are only interested in regulatory analysis and analytical characterization of the excavated soils.

Because samples used to evaluate the effectiveness of the cleanup are often analyzed on a per weight basis rather than based on an extraction analysis, such as the TCLP method, their usefulness in waste characterization is somewhat limited...beside the fact that the bottom of the hole is not the waste under consideration for disposal!
Total constituent analyses are useful when making decisions involving soils contaminated by listed hazardous wastes and for determining the effectiveness of the remediation.

Soils determined to be hazardous—whether by listing or by hazardous characteristics—must be handled accordingly. These standards require notification of hazardous waste activity to the EPA, impose storage time limitations, as well as numerous recordkeeping, reporting management and administrative requirements. Therefore, before excavation, be sure all arrangements for disposal have already been made. Storage of hazardous waste soils in excess of 90 days could result in enforcement of standards applicable to treatment, storage disposal facilities (TSDF). The remediation of spills involving listed chemical products can turn a small quantity generator into an illegal TSDF overnight.

Remediation of sites where hazardous and non-hazardous waste soils are excavated will require close scrutiny by the disposal facility. To an owner or backhoe operator, dirt is dirt. As such, these projects require oversight by a representative of the disposal facility who is familiar with the cleanup plan and knows how to supervise the off-site management of residuals.

Sampling and analysis plans for contaminated soils should be developed under the guidance outlined in EPA publication SW-864. This document describes procedures for obtaining representative samples of tanks, impoundments, waste piles, etc. For contaminated soils which contain metals at or near regulatory thresholds, consider application of the statistical methods outlined in SW-846 as prerequisite for disposal approval.

The last word
There is no such thing as the “last word” on the disposal of contaminated soils. With the anticipated reauthorization of RCRA and focus on non-hazardous industrial wastes, the regulatory climate will continue to change. All the players in a cleanup must be aware of where the regulatory lines are drawn, which apply to what and how to stay out of trouble.

Write in 501 for more information

ENVIRONMENTAL TEST KITS

Detect Low Levels of Oil and Gasoline in Water and Soil.

HNU-Hanby Environmental Kits are a new low-cost method for confirming and quantifying contamination from Leaking Underground Storage Tanks and other sources. The environmental test kits are easy to use and provide results for concentrations as low as 10 ppb in less than seven minutes. Ask us about chlorinated hydrocarbons or your special application. Call (800) 527-4566 and order your kit today.

Kits come complete with everything needed for immediate use: reagent packages for thirty tests, step-by-step instructional video, color charts, etc.

See HNU at the Hydrocarbon Contaminated Soils Conference in Long Beach, Calif. March 9-12. Write in 131
The Hrubout® process is a portable system for in situ treatments that injects pressurized, super-heated air, via perforated piping, into and directly below the contaminated soil zone, says the company. As soil water is evaporated, soil pores are less constricted, soil permeability increases and greater air flow carries higher temperatures. Lighter hydrocarbons are volatilized and move to the surface which is sealed with an impermeable cover. Most volatiles will go out with the soil water, but the heavier constituents of the hydrocarbon chain will not. Under vacuum, the volatile gases are directed into an incinerator for a destruction rate of not less than 99.5 percent. Heavier hydrocarbon contaminants which will not volatilize are oxidized in-situ with higher temperatures. Some fractions of petroleum fuel such as residual heating oils and lubricating oil will not evaporate. As the temperature increases, they decompose to carbonaceous constituents and to carbon itself. They are oxidized at about 800°F. The incinerator is built to California specifications. Vapor destruction is at 1500°F with a .6 second retention time for a 99.9 percent volatile destruction rate. The auxiliary air blower dilutes incoming vapors if they approach lower explosive levels. The unit has automatic shutdown for high and low gas pressure, flame failure and high temperature. Heated air is provided by an adiabatic burner rated at 3.2 mm btu. Air is compressed by twin air blowers powered by a 150 hp electric motor. Burners for both incineration and injection are fueled by either propane or natural gas. The unit can also be used for ex-situ treatments involving either containerized soil or horizontal pipes laid on the surface, with the soil piled on top and sealed. Cost for in situ treatment is about $45-90 per cubic yard. Ex-situ costs range from $40 to 50 per cubic yard. The unit is trailer mounted, 38 feet long, 8 feet wide with a stack height of 13 feet and weighs 10 tons.

Write in 511 for more information
5th Annual Presentation

HazMat central

Hazardous Materials and Environmental Management Conference & Exhibition/Central
March 10-12, 1992
Rosemont/O'Hare Exposition Center
Rosemont, Illinois

You Can’t Afford to Miss...
...The Midwest’s Largest, Most Authoritative Conference and Exhibition for Hazardous Materials and Environmental Management.

The Exhibition
The industry’s leading manufacturers and suppliers will be displaying their newest technologies in over 250 exhibit booths. See, compare and evaluate the specific products and services you need for your hazardous materials and environmental management requirements.

The Conference Program
Recognized industry experts will present over 65 individual papers. Additionally, there will be Certification Exams, special demonstrations and tours, and much, much more!

Workshops
"Hands-on" Workshops will fully cover these pertinent topics:
• Industrial Hygiene for the Non-Hygienist • RCRA Regulations • Chemistry for the Non-Chemist • Environmental Law • Waste Site Workers 8-Hour Refresher • Groundwater Hydrology • First Responder Operations Level Training • CPR Level I • Principles of Occupational Safety & Health • Field Chemistry • In-Plant Spill Response • Waste Site Supervisor’s Refresher • Planning for Compliance • Mobil Tank Truck Rollover • Pollution Prevention/Waste Minimization • Incident Commander/Scene Manager Certified Training • Laboratory Operations and Regulations • Transportation of Hazardous Materials • Soil Remediation

HazMat/Central has a four-year history of providing the ideal forum for the exchange of ideas and high-level educational programs for Hazardous Materials and Environmental Management.

Plan NOW to attend! Simply complete and mail the coupon, or contact the organizer, for complete details.

Sponsored by:

Organized by:

Co-Sponsored by:
U.S. EPA Region V • Purdue University • American Institute of Hazardous Materials Management • Hazardous Waste Treatment Council • Department of Energy/Office of Fossil Energy • Hazardous Waste Action Coalition • University of Illinois • Business & Legal Reports • Roosevelt University/Dept. of Environmental Programs • National Environmental Training Association • PASHA Publications • Chemical Equipment magazine • University of Findlay • Chemical Marketing Reporter • Econ Environmental Contractor magazine • Printed Circuit News • EPI: Environmental Products Index • World Safety Organization • K-III Information Company • Environmental Liability Report • Environmental Software Review • Environment Today • The Green Book • National Employment Review • Environmental Careers magazine • Environmental Lab magazine • Environmental Compliance Reporter • Soils magazine

To: Tower Conference Management Co. 800 Roosevelt Rd., Bldg E, Suite 408 Glen Ellyn, IL 60137-5935
Name
Company
Address
City
Phone ()
FAX ()

□ I am interested in ATTENDING HazMat/Central. Please send complete information and registration form.
□ My company is interested in EXHIBITING. Please contact me with full details.

State Zip

□ ABCDEFGH
IJKLMNOP
QRSTUVW
XYZ

Title
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page #</th>
<th>Inquiry #</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Environmental</td>
<td>15</td>
<td>167</td>
<td>816-524-8811</td>
</tr>
<tr>
<td>Alternative Waste Disposal, Inc.</td>
<td>22</td>
<td>124</td>
<td>800-837-5050</td>
</tr>
<tr>
<td>American Reclamation Corp.</td>
<td>11</td>
<td>148</td>
<td>508-624-7006</td>
</tr>
<tr>
<td>Art’s Manufacturing & Supply</td>
<td>37</td>
<td>602</td>
<td>800-635-7330</td>
</tr>
<tr>
<td>Atlantic Screen & Mfg., Inc.</td>
<td></td>
<td>181</td>
<td>305-219-1797</td>
</tr>
<tr>
<td>BioVac Environmental Services</td>
<td>40</td>
<td>182</td>
<td>314-947-9917</td>
</tr>
<tr>
<td>Carter Equipment Co.</td>
<td>41</td>
<td>147</td>
<td>800-821-2263</td>
</tr>
<tr>
<td>Central Testing Service</td>
<td>54</td>
<td>173</td>
<td>800-624-9172</td>
</tr>
<tr>
<td>D.A. Collins Construction Co.</td>
<td>52</td>
<td>101</td>
<td>516-664-9565</td>
</tr>
<tr>
<td>EG&G/Rotron</td>
<td>25</td>
<td>185</td>
<td>914-246-3408</td>
</tr>
<tr>
<td>Environmental Audits & Consultants</td>
<td>47</td>
<td>114</td>
<td>618-283-0200</td>
</tr>
<tr>
<td>Environmetrics</td>
<td>34</td>
<td>117</td>
<td>800-430-6800</td>
</tr>
<tr>
<td>Environquest Technologies, Inc.</td>
<td>56</td>
<td>197</td>
<td>816-497-0386</td>
</tr>
<tr>
<td>Enviroscan</td>
<td>17</td>
<td>886</td>
<td>800-338-7226</td>
</tr>
<tr>
<td>Finch Mfg., Inc.</td>
<td>30</td>
<td>189</td>
<td>717-655-2277</td>
</tr>
<tr>
<td>Friedman & Boya, Inc.</td>
<td>3</td>
<td>556</td>
<td>502-401-0231</td>
</tr>
<tr>
<td>General Analysis Corp.</td>
<td>13</td>
<td>76</td>
<td>203-852-8999</td>
</tr>
<tr>
<td>General Testing Corp.</td>
<td>54</td>
<td>190</td>
<td>716-454-3760</td>
</tr>
<tr>
<td>GenTech Corp.</td>
<td>58</td>
<td>301</td>
<td>808-826-0223</td>
</tr>
<tr>
<td>General Miller, Inc.</td>
<td>54</td>
<td>314</td>
<td>802-225-8419</td>
</tr>
<tr>
<td>Giant Resource Recovery Co.</td>
<td>3</td>
<td>130</td>
<td>803-496-7676</td>
</tr>
<tr>
<td>HNU Systems, Inc.</td>
<td>51</td>
<td>131</td>
<td>617-664-6690</td>
</tr>
<tr>
<td>In-Situ, Inc.</td>
<td>23</td>
<td>192</td>
<td>808-466-7489</td>
</tr>
<tr>
<td>Intek Corp.</td>
<td>10</td>
<td>151</td>
<td>713-434-8555</td>
</tr>
<tr>
<td>Mack Laboratories, Inc.</td>
<td>2</td>
<td>193</td>
<td>800-845-9529</td>
</tr>
<tr>
<td>Metco Environmental, Inc.</td>
<td>41</td>
<td>886</td>
<td>301-729-6722</td>
</tr>
<tr>
<td>Midland Machinery Co.</td>
<td>22</td>
<td>950</td>
<td>800-243-8662</td>
</tr>
<tr>
<td>Mobile Screen, Inc.</td>
<td>41</td>
<td>886</td>
<td>301-860-2268</td>
</tr>
<tr>
<td>Modular Remediation</td>
<td>95</td>
<td>194</td>
<td>317-784-7731</td>
</tr>
<tr>
<td>O/C Tanks</td>
<td>28, 29</td>
<td>195</td>
<td>800-0C-TANKS</td>
</tr>
<tr>
<td>PEMCO</td>
<td>27</td>
<td>159</td>
<td>503-263-2151</td>
</tr>
<tr>
<td>Perma-co, Inc.</td>
<td>13</td>
<td>136</td>
<td>408-453-7804</td>
</tr>
<tr>
<td>Perus, Inc.</td>
<td>56</td>
<td>186</td>
<td>717-944-5501</td>
</tr>
<tr>
<td>RE Wright Associates</td>
<td>45</td>
<td>137</td>
<td>816-214-5090</td>
</tr>
<tr>
<td>Recycling Alternatives, Inc.</td>
<td>59</td>
<td>156</td>
<td>616-507-3100</td>
</tr>
<tr>
<td>Remedial Environmental Corp.</td>
<td>54</td>
<td>171</td>
<td>516-264-2215</td>
</tr>
<tr>
<td>SRI Instruments</td>
<td>54</td>
<td>171</td>
<td>212-214-5090</td>
</tr>
<tr>
<td>Superior Environmental</td>
<td>41</td>
<td>203</td>
<td>800-669-0699</td>
</tr>
<tr>
<td>Sybron Chemical Co.</td>
<td>21</td>
<td>162</td>
<td>816-228-3509</td>
</tr>
<tr>
<td>Terracent Environmental Services</td>
<td>26</td>
<td>160</td>
<td>316-262-0735</td>
</tr>
<tr>
<td>Texas In-Central</td>
<td>34</td>
<td>184</td>
<td>915-887-6780</td>
</tr>
<tr>
<td>Tower Conference Management</td>
<td>53</td>
<td>199</td>
<td>708-469-2613</td>
</tr>
<tr>
<td>TPS Technologies, Inc.</td>
<td>5</td>
<td>199</td>
<td>407-886-2000</td>
</tr>
<tr>
<td>Tracer Research Corp.</td>
<td>14</td>
<td>200</td>
<td>602-888-9400</td>
</tr>
<tr>
<td>University of Mass.</td>
<td>42</td>
<td>188</td>
<td>413-645-2934</td>
</tr>
<tr>
<td>Xenexes Corp.</td>
<td>36</td>
<td>174</td>
<td>612-887-1890</td>
</tr>
</tbody>
</table>

The Index and Hotline are provided as a service. The publisher does not assume liability for errors or omissions.

LOWEST COST-HIGHEST PERFORMANCE GAS CHROMATOGRAPHS AND INTEGRATORS
SIXES DETECTORS FOR FIELD PORTABLE-TEMP-PROC.
ALL EPA-ASTM METHOD09
FID TED ECD EPP
FID FID/ECD ECD/ECD
COMBINE ANY ALL
SRI INSTRUMENTS

Write in 171

GERAGHTY & MILLER, INC. Environmental Services
- Hydrocarbon Recovery
- Environmental Engineering
- Underground Storage Tank Services
- Soil/Ground-Water Investigation and Remediation
- Environmental Site Assessments
- Pollution Prevention Services
125 E. Bethpage Rd., Plainview, NY 11803 1-800-225-8419
Offices Located Nationwide

Write in 104

We want to hear from you.
Use the Soils Fax-O-Gram on page 48 to bend our ear,
request advertising information or tell us what you think about this issue.

Comprehensive Analytical & Sampling Services related to:
Contaminated Soils • Groundwater • Wastes
Wastewater • Air

General Testing Corporation
235 Millpark Drive
Maryland Heights, MO 63043

Write in 184

THermal SOil PROCESSING EQUIPMENT

ASPHALT PLANT CONVERSIONS
COMPLETE REMEDIATION PLANTS
THERMAL OXIDIZERS (AFTERBURNERS)
SUPPORT AND PROCESS EQUIPMENT
CUSTOM DESIGNED EQUIPMENT
CONSULTING SERVICES
EXPERIENCE • ECONOMY • SERVICE
TEXAS INCINERATOR CO., INC.
2401 NEILL AVENUE
MIDLAND, TEXAS 79701
Phone: 915-687-6780 Fax: 915-687-5046

Write in 190

C.T.S. Central Testing Service
Wils. • Mich. • Ill.

- Tank Testing—Upgrading—Removal
- Tank Site Closures/Audits
- On-Site Hydrocarbon Recovery
- Soil/Water Remediation Systems
- Monitor Well Design/Installation
- Site Assessments/Investigations
1-800-542-9392
Fax: 715-266-3109

Write in 113

Write in 114

Write in 111
The only solution you should consider for your petroleum contaminated soil problems.

State of the art technology allows you to recycle on-site at an extremely reduced rate and maintain a rapid quantity of material processed daily.

The mobile emulsion unit has been specifically designed for the recycling of contaminated soils. This is the only system of its kind which screens, classifies, weighs, and through computer supervision, thoroughly mixes soils with custom liquid asphalt emulsions. Available in portable or stationary models, with process rates up to 300 tons per hour. Configurations available for additive feed and special features.

The Proven Solution: Valuable construction products are manufactured, while costly environmental liability is avoided. Please direct inquiries concerning:
- Regional Recycling Centers
- Mobile Remediation Services
- Joint Venture Opportunities
- Engineering for Recycling

Please feel free to contact us for price quotes on all your remediation problems.

Write in 196
Announcing a Breakthrough in Technology...

...Not Carbon

Introducing the most powerful, most efficient VOC treatment products for soil, air, and water.

Purus Treatment Systems

Vapor Phase Treatment Systems for Soil, Air, and Water
A new air-treatment system which cost-effectively removes volatile solvents and fuel residues from soil venting and air stripping operations. The Purus VS-250 treats TCE, PCE, and DCE directly with Xenon high intensity ultraviolet flashlamps. Other solvents require the Purus solvent recovery treatment system, which traps and collects the VOCs from the vapor phase using a specialized resin. Recovered product may be recycled or destroyed on-site, reducing overall treatment costs compared to conventional technologies.

2150 Paragon Drive San Jose, CA 95131 (408) 453-7804 FAX (408) 453-7988
Write in 186